
 
 
 

International Journal of Computing and Digital Systems 
ISSN (2210-142X)  

Int. J. Com. Dig. Sys. 15, No.1 (Mar-24)  

 

 
E-mail:1nikita.ece@mrsptu.ac.in; 2savina.bansal@gmail.com; 3drrakeshkbansal@gmail.com 

  https://journal.uob.edu.bh/ 
 

http://dx.doi.org/10.12785/ijcds/150179 
 

Optimizing Fog Computing Efficiency: Exploring the Role of 
Heterogeneity in Resource Allocation and Task Scheduling 

 
Nikita Sehgal1, Savina Bansal2 and RK Bansal3 

 
1,2,3Department of Electronics & Communication Engineering 

1,2,3Giani Zail Singh Campus College of Engineering & Technology, Maharaja Ranjit Singh Punjab Technical University,  
Bathinda-151001 (Punjab), India 

 
E-mail address: 1nikita.ece@mrsptu.ac.in; 2savina.bansal@gmail.com; 3drrakeshkbansal@gmail.com 

 
Received 13 Sep. 2023, Revised 15 Jan. 2024, Accepted 7 Feb. 2024, Published 1 Mar. 2024 

 
Abstract: Fog computing is a promising solution for latency-sensitive applications in the Internet of Things (IoT) era. This research 
thoroughly investigates the performance characteristics of fog computing systems, specifically focusing on the impact of 
architectural heterogeneity. The study explores how architectural diversity, deadline constraints, and the count of Mobile Data 
Centers (MDCs) influence key performance metrics. Through experimental simulations, the research assesses success ratio, rejection 
ratio, and resource utilization across various architectural models. The findings emphasize the significance of adopting 
heterogeneous architectures and wider deadline ranges, leading to improved success ratio and reduced job rejection. Moreover, 
increasing the number of MDCs positively affects resource utilization and overall system performance. This research offers valuable 
insights for optimizing fog computing systems, enabling the development of efficient solutions for real-world applications. 
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1. INTRODUCTION 

The rapid increase of Internet of Things (IoT) devices 
has led to an exponential increase in data generation and 
processing requirements. However, traditional cloud 
computing architectures face numerous challenges in 
effectively addressing the unique demands of IoT 
applications, including latency issues, limited bandwidth, 
and concerns regarding data privacy and security [3, 4, 12, 
20]. To overcome these challenges, fog computing has 
emerged as a promising paradigm that brings 
computation, storage, and networking resources closer to 
the edge of the network. Fog computing extends the 
capabilities of cloud computing by deploying a distributed 
computing infrastructure at the network edge [5, 9, 21]. 
This proximity to the edge allows fog computing to 
provide low-latency and high-bandwidth services to IoT 
devices, making it an ideal solution for real-time and 
latency-sensitive applications. Cloud data centers (CDCs) 
have emerged as a dominant execution mode for 
processing the data generated by IoT devices. However, 
the latency involved in transmitting data from IoT devices 
to CDCs can cause real-time applications to miss their 
processing deadlines. To overcome this latency challenge, 

edge computing has been introduced, where computation 
is performed as close to the source as possible, reducing 
the need for data transmission to the cloud. Mobile data 
centers (MDCs), also known as cloudlets, are edge 
devices that can execute jobs that would have otherwise 
been scheduled to run at a CDC [1]. By leveraging MDCs, 
latency-sensitive real-time applications, can meet their 
processing requirements without the significant network 
latency to the CDC. 

Efficient resource utilization and task scheduling are 
critical components of fog computing systems [7, 13, 15, 
16]. With a large number ofIoT devices and tasks to 
manage, an intelligent and deadline-aware task scheduling 
mechanism becomes essential to optimize resource usage 
and improve system performance. Furthermore, 
considering the limited resources of edge devices and the 
importance of efficient resource utilization, fog computing 
systems must prioritize scheduling IoT tasks in a manner 
that maximizes resource efficiency [17,19,28]. Deadline-
aware task scheduling ensures that tasks are executed 
within their specified time constraints, which is 
particularly crucial for time-sensitive IoT applications 
such as real-time monitoring, autonomous systems, and 
smart grids [8,23]. Utilizing smart algorithms and 
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optimization techniques, a fog computing system allocates 
tasks to suitable computing resources, ensuring timely 
execution and meeting stringent time requirements. 
Efficient resource utilization is closely intertwined with 
deadline-aware task scheduling in fog computing systems 
[24,25]. By optimizing computing resource allocation, 
load balancing, and task assignment strategies, the system 
can effectively utilize available resources, avoiding 
bottlenecks and underutilization [11,14,32,35]. This not 
only enhances overall system performance but also 
reduces operational costs by minimizing the need for 
additional resources and improving the scalability of the 
IoT infrastructure. 

Fog computing presents a set of practical 
considerations and challenges that significantly influence 
its deployment in real-world scenarios. In terms of 
deployment considerations, optimizing the network 
topology is paramount to ensure efficient data processing 
and minimal latency [6,7,13,21]. Proper resource 
allocation among fog nodes, considering the diverse 
capabilities of devices, plays a crucial role in enhancing 
overall system performance. Effective data management 
strategies, encompassing storage and transfer, are 
essential to handle the substantial volume of information 
generated by IoT devices. Additionally, implementing 
robust security measures at the edge is critical to 
safeguard sensitive data and maintain the integrity of fog 
computing systems[1, 4,36]. 

Conversely, fog computing deployment also faces 
various challenges that need careful navigation. 
Interoperability issues must be addressed to seamlessly 
integrate fog computing into existing infrastructures, 
enabling communication across diverse devices and 
platforms. Scalability is a persistent challenge, requiring 
adaptive measures to meet the escalating demands for 
computational resources as the number of IoT devices 
grows [5, 28]. Privacy concerns emerge with the 
decentralized processing of data at the edge, necessitating 
the implementation of privacy-preserving mechanisms to 
comply with regulations and establish user trust. 
Furthermore, ensuring reliability and fault tolerance in 
dynamic and potentially unstable edge environments is 
crucial for sustained performance [29,30]. Lastly, 
optimizing power consumption becomes imperative for 
fog computing deployments in remote or resource-
constrained areas, emphasizing the need for energy-
efficient solutions. Successfully navigating these 
considerations and challenges is pivotal for leveraging the 
full potential of fog computing in enhancing latency-
sensitive applications and optimizing resource utilization 
at the network's edge [20,27]. 

In conclusion, fog computing and the integration of 
MDCs and CDCs provide a powerful framework for 
addressing the challenges of IoT applications [1]. By 
bringing computation closer to the edge, fog computing 
enables low-latency and high-bandwidth processing, 

while efficient resource utilization and deadline-aware 
task scheduling optimize system performance and meet 
the real-time requirements of IoT applications. These 
advancements pave the way for the effective deployment 
of IoT technologies in various domains, including smart 
cities, healthcare, transportation, and industrial 
automation [10,30,37]. 

The structure of the paper is as follows: the next 
section describes the latest related works in the area of fog 
computing. Detailed description of the proposed and 
implemented scheduling approach is presented in Section 
3. The performance metrics and simulation setup used for 
experimentation are explained in Section 4 and 5 
respectively. Section 6 presents the exhaustive 
performance analysis of the Homogeneous Architecture, 
Fixed Heterogeneity Model (FHM), and Mixed 
Heterogeneity Model (MHM). Finally, the paper 
completes with an overall conclusion in Section 7. 

2. LITERATURE SURVEY 

In recent years, there has been significant research 
conducted in the field of fog computing, addressing 
various aspects such as security, privacy, energy 
efficiency, resource management, and task scheduling. 
This literature review aims to provide an overview of the 
key studies conducted by researchers in these areas, 
highlighting their contributions and findings. Yousefpour 
et al. [34] proposed a fog computing approach aimed at 
minimizing delays in cloud service provisioning. They 
introduced a fog-enabled architecture that utilized local 
fog nodes to host and deliver cloud services closer to end-
users. The authors discussed the advantages of reduced 
service latency and network congestion, emphasizing the 
importance of fog computing in improving the 
performance of cloud services. Oma et al. [22] proposed a 
tree-based fog computing (TBFC) model for efficient 
distribution of processes and data in IoT environments. 
The aim was to minimize the total electric energy 
consumption of nodes in the IoT. Through evaluations, 
the authors concluded that the TBFC model outperformed 
traditional cloud computing models by reducing energy 
consumption.  

Toor et al. [2] presented an adaptive performance and 
energy-aware scheme for Fog-IoT computational 
environments utilizing iFogSim. The experimental results 
demonstrated enhancements in energy consumption, 
particularly in the power saver mode, compared to the 
existing approach. Deng et al. [37] proposed an improved 
Cuckoo Search algorithm incorporating various 
modifications for task scheduling on heterogeneous 
multiprocessor systems. The algorithm addressed task 
scheduling using Dynamic Voltage and Frequency 
Scaling (DVFS) to achieve better scheduling 
performance. This study demonstrated the effectiveness of 
the improved algorithm in optimizing task scheduling in 
fog computing environments. Bansal et al. [26] explored 



 
 
                                                                                        Int. J. Com. Dig. Sys. 15, No.1, 1119-1133 (Mar-24)            1121 
 

 
http://journals.uob.edu.bh 

 

dynamic voltage scaling (DVS) and dynamic power 
management (DPM) techniques for energy management 
in fog computing. They proposed preference-oriented 
energy-aware rate-monotonic scheduling (PER) and 
preference-oriented extended energy-aware rate-
monotonic scheduling (PEER) algorithms, which 
outperformed several related studies in terms of energy 
savings. This research provided valuable insights into 
energy management techniques for fog computing 
systems. 

Singh et al. [1] proposed RT-SANE, a solution that 
enabled batch and interactive applications to run while 
considering deadlines and safety requirements. Their 
approach selected between different computing platforms 
based on network latency and security tags, prioritizing 
speed and reliability. However, energy-efficient task 
scheduling was not prioritized in their work. Zhang et al. 
[36] presented a comprehensive review of fog computing, 
focusing on its vision, architecture, and challenges. They 
discussed the benefits of fog computing compared to 
traditional cloud computing and highlighted the key 
design principles and architectural components of fog 
computing systems. The paper also addressed challenges 
related to resource management, security, and scalability 
in fog computing environments. Rizwan et al. [14] 
conducted an experimental evaluation of machine learning 
algorithms for resource management in fog computing. 
They compared different algorithms, including decision 
trees, random forests, and support vector machines, to 
optimize resource allocation and task scheduling. The 
experimental results demonstrated the effectiveness of 
machine learning algorithms in improving resource 
utilization and overall system performance. Zhang et al. 
[33] investigated IoT task offloading in fog computing 
environments. They proposed a dynamic task offloading 
algorithm based on multi-objective optimization to 
achieve efficient resource utilization and reduce latency. 
Experimental results validated the effectiveness of the 
algorithm in improving system performance. 

Zhou et al. [30] focused on fog-to-cloud offloading in 
the context of mobile edge computing (MEC). They 
proposed a joint optimization approach that considered 
both energy consumption and latency in the decision-
making process for offloading tasks from fog to cloud. 
Experimental evaluations showed the advantages of the 
proposed approach in achieving energy-efficient and low-
latency fog-to-cloud offloading. Azizi et al. [23] 
conducted a recent study on energy-efficient scheduling in 
a fog environment. They introduced two semi-greedy 
approaches to minimize penalty for deadline violations of 
independent real-time jobs on a heterogeneous fog 
platform. However, their study did not include the cloud 
platform in the analysis. Finally, Wang et al. [29] 
proposed a trust management framework for fog 
computing in the Industrial Internet of Things (IIoT). 
They designed a trust evaluation model and developed a 
trust management mechanism to enhance security and 

reliability in fog computing environments. Experimental 
results demonstrated the effectiveness of the framework in 
mitigating trust-related risks in IIoT applications.  Sehgal 
et al. [20] conducted an extensive review of task and 
resource scheduling techniques within the fog computing 
context. The study aimed to identify contributions and 
limitations of different approaches in the fog computing 
environment, providing insights into their practical 
applicability. The authors delved into the details of task 
scheduling and resource allocation, offering valuable 
perspectives in the field of fog computing. This work 
serves as a foundational resource for comprehending 
current solutions and acts as a guide for the development 
of new and enhanced techniques. Atiq et al.[6] introduced 
a novel framework called Reliable Resource Allocation 
and Management (R2AM) to efficiently manage resource 
allocation in IoT transportation through fog computing. 
The strategy involves queuing data from IoT devices for 
storage and processing, alongside separate queues for fog 
nodes. Available fog nodes were prioritized based on their 
processing time, and IoT data is assigned to them in the 
specified order. Upon successful execution, the results 
were delivered to the users. This innovative approach 
ensured reliable and effective resource utilization in the 
context of IoT transportation and fog computing. In 
conclusion, these studies contribute to the growing body 
of knowledge in fog computing and identify future 
research directions for further advancements in the field. 

3. PROPOSED WORK 

The scheduling algorithm introduced takes into 
account network delay and security tags to determine the 
appropriate assignment of jobs. User-submitted jobs are 
classified into three categories: private, semi-private, and 
public, based on their security requirements. Private jobs 
are exclusively executed on the user's local Mobile Data 
Centers (MDCs) to ensure the preservation of a trusted 
environment. Semi-private jobs have the flexibility to be 
processed either on a MDC or a CDC, depending on 
specific requirements. Public jobs, which have lower 
security demands, are assigned to CDCs and remote 
MDCs. This approach strikes a balance between security 
and resource utilization. Private jobs receive the necessary 
security measures by being processed locally, while semi-
private and public jobs can leverage the resources 
available in remote locations, optimizing the allocation of 
resources and overall system performance. To evaluate 
the effectiveness of the proposed scheduling algorithm, 
the code implementation initializes essential variables and 
parameters, including the number of jobs, MDCs, and 
CDCs, along with their respective capacities and 
communication delays. Job descriptions are generated, 
taking into account execution time (et), size, deadline, 
arrival time, and job types. The scheduling process 
follows a priority-based approach, assigning private jobs 
to MDCs, semi-private jobs to either MDCs or the CDC, 
and public jobs to the CDC or remote MDC meeting 
deadline and capacity requirement. The deadline and 
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capacity conditions for MDCs and CDCs in the fog 
computing system are expressed using “(1)” to “(8)”. 
“(1)” calculates the time (A) when a job can start 
processing at the MDC, considering factors like 
communication delay, job size, bandwidth, MDC’s 
available time, execution time, and MDC's capacity. 
Equation (2) represents the deadline of the job (B), a 
predefined time limit for completion. 

A. MDC Deadline Condition: 

 𝐴 = 𝑐𝑑_𝑚𝑑𝑐 + ((𝑗𝑜𝑏_𝑠𝑖𝑧𝑒 )/(𝑏𝑤_𝑚𝑑𝑐 ) )
+ 𝑚𝑑𝑐_𝑟𝑑𝑦_𝑡𝑖𝑚𝑒 
+ ((𝑗𝑜𝑏_𝑒𝑡) ⁄ (𝑚𝑑𝑐_𝑐𝑎𝑝 )) 

 

(1) 

 B=job_dl (2) 

The condition for scheduling a job is determined by 
comparing A with B as given in “(3)”. If A is less than or 
equal to B, the job status is denoted as 1 (scheduled 
within the deadline), otherwise, it is 0 (not scheduled 
within the deadline). 

 𝑖𝑓, 𝐴 ≤ 𝐵: 𝐽𝑜𝑏 𝑠𝑡𝑎𝑡𝑢𝑠 = 1 (3) 

Similarly, “(4)” calculates the time (C) when a job can 
start processing at the CDC, considering similar factors 
as for MDCs.  

B. CDC Deadline Condition: 

 𝐶 = 𝑐𝑑_𝑐𝑑𝑐 + ((𝑗𝑜𝑏_𝑠𝑖𝑧𝑒 )/(𝑏𝑤_𝑐𝑑𝑐 ) )
+ mdc_rdy_time 
+ ((job_et) ⁄ (cdc_cap )) 

(4) 

Similar to the MDC Deadline Condition, the calculated 
start time of the job at the CDC (C) is compared with the 
deadline of the job (B) (refer “(5)”) to determine if the 
job can be scheduled and completed within its deadline. 
If C is less than or equal to B, the job can be scheduled 
within its deadline, and its status is denoted as job status 
= 1 

 𝑖𝑓, 𝐶 ≤ 𝐵: 𝐽𝑜𝑏 𝑠𝑡𝑎𝑡𝑢𝑠 = 1 (5) 

The capacity condition “(6)” calculates the required 
processing capacity for a specific job. 

 𝑐𝑎𝑝_𝑟𝑒𝑞 =  (𝑗𝑜𝑏_𝑠𝑖𝑧𝑒) ⁄ (𝑗𝑜𝑏_𝑒𝑡) (6) 

For both MDCs and CDCs, “(7)” and “(8)” ensure that 
the available processing capacity is sufficient to handle 
the job’s requirements. 

C. MDC Capacity Condition: 

 𝑀𝐷𝐶_𝑐𝑎𝑝 ≥ 𝑐𝑎𝑝_𝑟𝑒𝑞 (7) 

D. CDC Capacity Condition 

 𝐶𝐷𝐶_𝑐𝑎𝑝 ≥ 𝑐𝑎𝑝_𝑟𝑒𝑞 (8) 

By validating these capacity conditions, the fog 
computing system can effectively allocate jobs to the 
appropriate data centers based on their processing 
capabilities. Jobs are assigned to MDCs if their capacity 
is adequate for the job's processing needs. If no suitable 
MDC is available, the job may be allocated to the CDC 
or remote MDC, provided its capacity can handle the job. 
Adhering to these capacity conditions is vital for 
optimizing the performance and resource utilization of 
fog computing systems. It helps avoid overload situations 
and ensures that jobs are efficiently processed by the 
most suitable data center within the system. The research 
paper then conducts a comprehensive performance 
analysis to assess the efficiency of the system. 
Performance metrics, such as success ratio, rejection ratio 
and MDC and CDC utilization are calculated. 
Additionally, the analysis explores the impact of different 
job types and scheduling strategy on the overall system 
performance. 

4. PERFORMANCE METRICS 

Performance metrics play a crucial role in evaluating 
the efficiency and effectiveness of fog computing 
systems. These metrics provide valuable insights into the 
system’s task scheduling capabilities and resource 
utilization. The key performance metrics used in this 
experimentation work are briefly defined as follows: 

Success Ratio (SR): The success ratio measures the 
percentage of tasks successfully completed within their 
specified constraints. It provides an indication of the 
efficiency and effectiveness of task scheduling. It is 
defined as the ratio of successfully scheduled jobs to the 
total number of jobs as given in “(9)”. 

𝑆𝑅 =  
𝑛(𝑗𝑜𝑏𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑)

𝑛(𝑗𝑜𝑏𝑠)
∗ 100  (9) 

Rejection Ratio (RR): The rejection ratio measures 
the proportion of rejected jobs to the total number of jobs 
as given by “(10)”. It refers to the proportion or 
percentage of incoming tasks or requests that are not 
successfully serviced or completed within the system's 
specified constraints or deadlines. In other words, it 
represents the rate of tasks or jobs that are rejected or not 
accommodated due to various reasons, such as resource 
limitations, exceeded deadlines, or system overload. 

 
𝑅𝑅 =  

𝑛(𝑗𝑜𝑏𝑠_𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑)

𝑛(𝑗𝑜𝑏𝑠)
∗ 100 (10) 
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Here, the “n(jobs_rejected)” refers to the count of 
jobs that were not successfully scheduled or processed, 
while the “n(jobs)” represents the overall number of jobs 
considered. By calculating the rejection ratio, the 
efficiency of a scheduling algorithm or system in terms of 
job acceptance and resource utilization can be accessed. A 
lower rejection ratio indicates a higher success rate in job 
scheduling, while a higher rejection ratio suggests that a 
significant number of jobs were unable to be 
accommodated or processed. 

Resource Utilization (RU): Resource utilization 
measures the efficiency of resource usage in the system 
“(11)”. It quantifies the extent to which resources, such as 
processing capacity or bandwidth, are effectively utilized. 
In the context of fog computing or task scheduling, 
resource utilization is often measured for individual 
resources, such as MDCs (Mobile Data Centers) or CDCs 
(Central Data Centers). 

𝑅𝑈 =
𝑇𝑜𝑡𝑎𝑙 𝐵𝑢𝑠𝑦 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
∗ 100 (11) 

The total busy time for MDCs (Mobile Data Centers) 
can be calculated as follows “(12)”: 

𝑇𝑜𝑡𝑎𝑙ௗ_௨௦௬_௧ = 
𝑚𝑑𝑐௨௦ௗೌ

𝑚𝑑𝑐

 (12) 

Similarly, the total busy time for the CDC (Central 
Data Center) can be calculated using “(13)” as: 

𝑇𝑜𝑡𝑎𝑙ௗ_௨௦௬_௧ = 
𝑐𝑑𝑐௨௦ௗ_

𝑐𝑑𝑐

 (13) 

This calculation represents the ratio of used capacity 
to total capacity for the CDC, indicating its busy time. 

5. EXPERIMENTAL SET-UP 

The experimental setup encompasses a range of 
scenarios to investigate the performance of a fog 
computing system, considering various factors such as the 
number of jobs, MDCs, CDCs, communication 
bandwidth, communication delay, deadline range, α 
factor, task size, and three levels of heterogeneity. The 
selection of these parameters was deliberate, aiming to 
ensure a thorough assessment of the system's performance 
and behavior. The number of jobs considered in the 
experiment ranged from 100 to 500, providing a diverse 
workload for the system under evaluation. The number of 
MDCs varied from 4 to 12, representing the fog 
computing nodes in the system. Additionally, there was 
one CDC in the setup. Communication bandwidth played 
a crucial role in the experiment, with the bandwidth from 
the user to the MDC set at 2000 Mbps and the bandwidth 
from the user to the CDC set at 4000 Mbps. These 
bandwidth values ensured efficient data transfer between 
the users and the fog computing nodes, as well as between 
the users and the central data center. 

The communication delay from a source to an MDC 
was set at 5 ms, and to the CDC was set at 105 ms. 
Deadline range was another important factor considered 
in the experiment. The tasks had a fixed deadline range, 
with a loose deadline range of 10% to 50% of the job's 
execution time and a tight deadline range of 10% to 20% 
of the job's execution time. The tasks consisted of a mixed 
bag of small and larger-sized tasks chosen randomly. 
Three levels of MDC Capacity Heterogeneity are defined 
based on the processing capacities of the Mobile Data 
Centers (MDCs). At Level 1, MDCs have processing 
capacities ranging from 3000 to 4000 Million Instructions 
Per Second (MIPS). These MDCs offer moderate 
processing power, suitable for handling a variety of tasks 
and workloads.  Level 2, MDCs have processing 
capacities ranging from 2500 to 4500 MIPS, providing a 
wider range of processing power. This level 
accommodates tasks with higher computational demands 
while still being capable of handling less intensive 
workloads. At Level 3, MDCs have processing capacities 
ranging from 2000 to 5000 MIPS. MDCs at this level 
exhibit a broader spectrum of processing power, enabling 
them to handle both low and high-computational tasks 
effectively. This heterogeneity in MDC capacities allows 
the fog computing system to efficiently allocate resources 
and distribute tasks based on the specific computational 
requirements of different applications and workloads. The 
Cloud Data Center (CDC) exhibits a processing capacity 
in the range of 60000 MIPS respectively. 

Moreover, the experiments included three models to 
explore different architectural scenarios: the 
Homogeneous Architecture, the Fixed Heterogeneity 
(FHM) Architecture, and the Mixed Heterogeneity 
(MHM) Architecture. In the Homogeneous Architecture, 
all fog nodes had identical processing capacities within a 
specific range, resulting in a uniform distribution of 
computational resources. The Fixed Heterogeneity (FHM) 
Architecture introduced a level of heterogeneity by 
assigning a certain percentage of jobs to fog nodes with 
higher processing capacities, while the remaining jobs 
were allocated to fog nodes with lower capacities. The 
Mixed Heterogeneity (MHM) Architecture randomly 
assigned different processing capacities to fog nodes 
within the specified ranges, creating a diverse and 
dynamic computational environment. 

All simulations in this study were implemented using 
MATLAB platform. The experimental setup was executed 
on a desktop computer equipped with an Intel(R) 
Core(TM) i7-6700 CPU running at 3.40GHz (boost 
frequency up to 3.41GHz), 8 GB of RAM, and operating 
on the Windows 10 operating system. To ensure statistical 
robustness and accuracy, each experiment was repeated 
five times with a different seed value for random number 
generation. This process of repeating the experiments with 
varying seed values helps account for any inherent 
randomness in the simulations. The average values 
obtained from these repeated runs were then used to report 
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the final results. The reference paper [1] served as a basis 
for the implementation, and modifications were made to 
incorporate the specific changes required for this study. 
By considering these parameters and archit
scenarios, the experimental study aimed to evaluate the 
system's behavior and performance under different 
workload, communication, and resource allocation 
conditions. 

6. RESULTS AND DISCUSSION 

This section presents the observations derived from 
the analysis of various aspects of fog computing systems. 
The study focuses on investigating the impact of multiple 
variables, such as the number of jobs, deadline ranges, 
heterogeneity levels, and the number of Mobile Data 
Centers (MDCs), on the performance and
utilization of these systems. By examining metrics like the 
success ratio, rejection ratio, and resource utilization 
across different architectures and scenarios, valuable 
insights are obtained. The results shed light on the 
operational effectiveness of fog computing systems and 
emphasize the advantages of incorporating heterogeneity 
into these systems. 

The experimental work includes 400 jobs, 10 MDCs, 
and 1CDC. The analysis takes into account a moderate 
deadline range of 10% to 40% of the job’s ex
Homogeneous Architecture ensures uniform processing 
capacities among all MDCs. The Fixed Heterogeneity 
Model (FHM) includes 30% fast MDCs and the rest as 
low-speed MDCs. In the Mixed Heterogeneity Model 
(MHM), different processing capacities 
distributed among MDCs, resulting in a constantly 
changing and diverse computational environment. This 
architectural model enables researchers to assess how 
resource heterogeneity impacts system performance.

A. Job Scaling 

The results in “Fig.1” primarily revolve around 
varying the workload volume while maintaining a 
moderate deadline range of 10% to 40% of the processing 
time for each job. The configuration involves 10 MDCs, 
1CDC at heterogeneity level 1.Examining the success 
ratio, it is evident that the Homogeneous model initially 
achieves a relatively high success ratio of 91% for 100 
jobs. However, as the number of jobs increases, the 
success ratio gradually declines. In contrast, both the 
Fixed Heterogeneity Model (FHM) and Mixed 
Heterogeneity Model (MHM) consistently exhibit higher 
success ratios. The FHM Architecture experiences a slight 
decline from 93.3% to 91.5% with increasing job 
numbers, while the MHM Architecture follows a similar 
trend, starting at 93% and slightly decreasing.
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capacities among all MDCs. The Fixed Heterogeneity 
Model (FHM) includes 30% fast MDCs and the rest as 

speed MDCs. In the Mixed Heterogeneity Model 
(MHM), different processing capacities are randomly 
distributed among MDCs, resulting in a constantly 
changing and diverse computational environment. This 
architectural model enables researchers to assess how 
resource heterogeneity impacts system performance. 

primarily revolve around 
varying the workload volume while maintaining a 
moderate deadline range of 10% to 40% of the processing 
time for each job. The configuration involves 10 MDCs, 

Examining the success 
that the Homogeneous model initially 

achieves a relatively high success ratio of 91% for 100 
jobs. However, as the number of jobs increases, the 
success ratio gradually declines. In contrast, both the 
Fixed Heterogeneity Model (FHM) and Mixed 

consistently exhibit higher 
The FHM Architecture experiences a slight 

decline from 93.3% to 91.5% with increasing job 
numbers, while the MHM Architecture follows a similar 
trend, starting at 93% and slightly decreasing. 
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Figure 1.  Impact of Increasing Numbers of Jobs on (a)Success Ratio, 
(b)Rejection Ratio, (c) MDC Resource Utilization and (d) CDC 
Resource Utilization in Homogeneous and Heterogeneous Fog 

Computing Systems 

Analyzing the rejection ratio, the Homogeneo
Model stands out with the highest rejection ratio, 
indicating a larger number of job rejections. Conversely, 
the FHM and MHM architectures demonstrate lower 
rejection ratios, suggesting more efficient job allocation 
and scheduling approach. Both MDC and 
utilization increase as the number of jobs increases across 
all architectures. In the Homogeneous Architecture, 
resource utilization steadily rises for both MDCs and 
CDCs, reaching levels of up to 65.77% and 55.85%, 
respectively. Similarly, the FHM and MHM architectures 
shows increase in resource utilization in both MDCs and 
CDCs, with the FHM Architecture showcasing the highest 
utilization rates among the three architectures. The FHM 
and MHM architectures consistently outperform the 
Homogeneous Architecture in terms of success ratio, job 
rejection ratio and resource utilization when number of 
jobs is increased indicating a need for efficient resource 
allocation and management. 

B. Varied Deadline Constraints 

“Fig. 2” presents significant findings 
performance attributes of fog computing systems under 
different deadline constraints. The experiment, using a 
dataset with 400 jobs, 10 MDCs, 1 CDC, and 
heterogeneity level 1, investigates the effects of wider 
(10% to 50%) and narrower (10% to 20%) deadline 
ranges on the system's performance metrics.
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(d) 

Figure 2.  Performance under Tight and Loose Deadlines on (a)Success 
Ratio, (b)Rejection Ratio, (c) MDC Resource Utilization and (d) CDC 

Resource Utilization in Homogeneous and Heterogeneous Fog 
Computing Systems 

The empirical analysis in “Fig. 2” demonstrates that 
extending the deadline range to 10% to 50% yields 
substantial performance improvements across all 
architectural models when compared to a narrower range 
of 10% to 20%. Specifically, the Homogeneous 
Architecture exhibits significantly higher success ratios 
within the broader deadline range (84.75% to 89.25%), 
while the narrower range results in a diminished success 
ratio of 55%. Similarly, the Fixed Heterogeneity (FHM) 
Architecture and Mixed Heterogeneity (MHM) 
Architecture showcase enhanced success ratios within the 
wider deadline range (FHM: 92% to 94%, MHM: 92.5% 
to 94.25%).Furthermore, a broader deadline range is 
associated with reduced rejections across all architect
models. The Homogeneous Architecture experiences a 
substantial decrease in the rejection ratio (from 15.25% to 
10.75%) within the wider deadline range, while the 
narrower range leads to a higher rejection ratio of 45%. 
Similarly, the FHM and MHM architectures maintain 
lower rejection ratios within the broader deadline range 
(FHM: 8% to 6%, MHM: 7.5% to 5.75%).Moreover, both 
MDCs and CDCs demonstrate improved resource 
utilization within the broader deadline range. The 
Homogeneous Architecture achieves hi
utilization levels (MDCs: up to 57.98%, CDCs: up to 
47.93%) within the wider deadline range, whereas the 
narrower range results in reduced utilization rates. 
Similarly, the FHM and MHM architectures exhibit 
enhanced resource utilization in both MDCs and CDCs 
when subject to the wider deadline range. 
the adoption of a broader deadline range (10% to 50%) 
optimizes performance metrics in fog computing systems, 
leading to higher success ratios, lower rejection ratios, and 
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The empirical analysis in “Fig. 2” demonstrates that 
extending the deadline range to 10% to 50% yields 
substantial performance improvements across all 
architectural models when compared to a narrower range 

Specifically, the Homogeneous 
Architecture exhibits significantly higher success ratios 
within the broader deadline range (84.75% to 89.25%), 
while the narrower range results in a diminished success 
ratio of 55%. Similarly, the Fixed Heterogeneity (FHM) 

rchitecture and Mixed Heterogeneity (MHM) 
Architecture showcase enhanced success ratios within the 
wider deadline range (FHM: 92% to 94%, MHM: 92.5% 
to 94.25%).Furthermore, a broader deadline range is 
associated with reduced rejections across all architectural 
models. The Homogeneous Architecture experiences a 
substantial decrease in the rejection ratio (from 15.25% to 
10.75%) within the wider deadline range, while the 
narrower range leads to a higher rejection ratio of 45%. 

tectures maintain 
lower rejection ratios within the broader deadline range 
(FHM: 8% to 6%, MHM: 7.5% to 5.75%).Moreover, both 

demonstrate improved resource 
utilization within the broader deadline range. The 
Homogeneous Architecture achieves higher resource 
utilization levels (MDCs: up to 57.98%, CDCs: up to 
47.93%) within the wider deadline range, whereas the 
narrower range results in reduced utilization rates. 
Similarly, the FHM and MHM architectures exhibit 

th MDCs and CDCs 
 In conclusion, 

the adoption of a broader deadline range (10% to 50%) 
optimizes performance metrics in fog computing systems, 
leading to higher success ratios, lower rejection ratios, and 

improved resource utilization. This facilitates more 
efficient job allocation and ultimately enhances the overall 
system performance compared to a narrower deadline 
range. 

C. Impact of Heterogeneity  

The gathered data provides significant results 
regarding the impact of heterogeneity on the success ratio, 
rejection ratio, and resource utilization in fog computing 
systems with varying MDC capacities. The analysis 
encompasses three MDC capacity ranges: Heterogeneity 
Level 1(3000-4000 MIPS), Level 2 (2500
and Level 3 (2000-5000MIPS). Within the Homogeneous 
Architecture, the MDC capacity is determined by the 
average value within each range. 
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source utilization. This facilitates more 
efficient job allocation and ultimately enhances the overall 
system performance compared to a narrower deadline 

The gathered data provides significant results 
heterogeneity on the success ratio, 

rejection ratio, and resource utilization in fog computing 
systems with varying MDC capacities. The analysis 
encompasses three MDC capacity ranges: Heterogeneity 
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(d) 

Figure 3.  Impact of Heterogeneity on (a)Success Ratio, (b)Rejection 
Ratio, (c) MDC Resource Utilization and (d) CDC Resource Utilization 

in Homogeneous and Heterogeneous Fog Computing Systems

As depicted in “Fig. 3”, the success ratio varies 
significantly across different architectural models and 
heterogeneity levels in fog computing systems. The 
Homogeneous Model maintains a consistent success ratio 
of 84.75% across all capacity ranges, while FHM and 
MHM achieve notably higher success ratios, even 
reaching 100% in certain capacity ranges. Comparatively, 
the Homogeneous Model exhibits a constant rejection 
ratio of 15.25%, while both FHM and MHM achieve an 
impressively low rejection ratio of 0%. Moreover, the 
introduction of heterogeneity in fog computing systems 
alleviates the stress on the CDC as the major workload is 
effectively handled by the MDCs. The utilization
heterogeneous architectures allows for more balanced 
resource distribution, resulting in reduced resource 
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As depicted in “Fig. 3”, the success ratio varies 
significantly across different architectural models and 
heterogeneity levels in fog computing systems. The 

maintains a consistent success ratio 
of 84.75% across all capacity ranges, while FHM and 
MHM achieve notably higher success ratios, even 

Comparatively, 
the Homogeneous Model exhibits a constant rejection 

5.25%, while both FHM and MHM achieve an 
impressively low rejection ratio of 0%. Moreover, the 
introduction of heterogeneity in fog computing systems 
alleviates the stress on the CDC as the major workload is 
effectively handled by the MDCs. The utilization of 
heterogeneous architectures allows for more balanced 
resource distribution, resulting in reduced resource 

utilization in the CDC and enhanced performance across 
the fog computing system. Overall, incorporating 
heterogeneity in fog computing systems yiel
success ratios, reduced rejection ratios, and improved 
resource utilization, particularly within MDCs. These 
findings underscore the significance of considering 
heterogeneous architectures and optimizing heterogeneity 
levels to enhance system performance and resource 
utilization in fog computing environments.

D. MDC Count Impact on Fog Computing 
(Heterogeneity Level 1) 

The experiments conducted using a dataset comprising 
400 jobs evaluates the system’s performance metrics with 
varying numbers of MDCs under a moderate deadline 
range (10% to 40% of job execution time) 
heterogeneity level 1. 
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utilization in the CDC and enhanced performance across 
Overall, incorporating 

heterogeneity in fog computing systems yields higher 
success ratios, reduced rejection ratios, and improved 
resource utilization, particularly within MDCs. These 
findings underscore the significance of considering 
heterogeneous architectures and optimizing heterogeneity 

formance and resource 
utilization in fog computing environments. 

MDC Count Impact on Fog Computing 

The experiments conducted using a dataset comprising 
performance metrics with 

varying numbers of MDCs under a moderate deadline 
% to 40% of job execution time) at 
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(c) 

(d) 

Figure 4.  Impact of Varying MDC Count on (a)Success Ratio, (b) 
Rejection Ratio, (c) MDC Resource Utilization and (d) CDC Resource 

Utilization in Homogeneous and Heterogeneous Fog Computing 
Systems at Heterogeneity Level 1 

As depicted in “Fig. 4”, the Homogeneous 
Architecture displays a consistent success ratio ranging 
from 67.25% to 84.75% as the numb
increases. In contrast, both FHM and MHM exhibit 
increasing success ratios with higher MDC counts, 
achieving up to 93% for FHM and 92.5% for MHM. This 
demonstrates that incorporating heterogeneity in the form 
of additional MDCs improves the overall success ratio of 
fog computing systems. The rejection ratio in the 
Homogeneous Architecture decreases from 32.75% to 
15.25% as the number of MDCs increases. In contrast, 
FHM and MHM exhibit significantly lower rejection 
ratios, ranging from 26.7% to 7% for FHM and 26.75% to 
7.5% for MHM in the highest MDC count. The 
Homogeneous Architecture experiences a slight decrease 
in MDC resource utilization, ranging from 58.84% to 
56%, with increasing MDCs. Similarly, FHM and MHM 
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he Homogeneous 
Architecture displays a consistent success ratio ranging 
from 67.25% to 84.75% as the number of MDCs 
increases. In contrast, both FHM and MHM exhibit 
increasing success ratios with higher MDC counts, 
achieving up to 93% for FHM and 92.5% for MHM. This 
demonstrates that incorporating heterogeneity in the form 

all success ratio of 
fog computing systems. The rejection ratio in the 
Homogeneous Architecture decreases from 32.75% to 
15.25% as the number of MDCs increases. In contrast, 
FHM and MHM exhibit significantly lower rejection 

for FHM and 26.75% to 
7.5% for MHM in the highest MDC count. The 
Homogeneous Architecture experiences a slight decrease 
in MDC resource utilization, ranging from 58.84% to 
56%, with increasing MDCs. Similarly, FHM and MHM 

show declining trends in MDC reso
ranging from 63.01% to 59.66% for FHM and 62.77% to 
59.13% for MHM. This implies that the introduction of 
more MDCs results in a slightly lower MDC resource 
utilization. In case of CDC resource utilization, the 
Homogeneous Architecture exhibits a gradual decrease 
from 56.43% to 46.93% with an increasing number of 
MDCs. Similarly, both FHM and MHM display 
decreasing resource utilization in the CDCs, ranging from 
55.71% to 45.61% for FHM and 55.79% to 45.33% for 
MHM. This suggests that as the 
increases, the load on the CDCs decreases, leading to 
reduced CDC resource utilization. Introducing 
heterogeneity through additional MDCs results in 
improved success ratios, reduced rejection ratios, and a 
more balanced utilization across the system. 

E. MDC Count Impact on Fog Computing 
(Heterogeneity resource Level 2) 

In the first scenario(“Fig. 4”)with heterogeneity level 
1 both the Homogeneous and Heterogeneous architectures 
showed improvements in success ratio, reduced task 
violations, and slightly decreased resource utilization in 
MDCs and the CDC as the number of MDCs increased.
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Figure 5.  Impact of Varying MDC Count on (a) Success Ratio, 
(b)Rejection Ratio, (c) MDC Resource Utilization and (d) CDC 
Resource Utilization in Homogeneous and Heterogeneous Fog 

Computing Systems at Heterogeneity Level 2

In the second scenario (“Fig. 5”), where MDC 
heterogeneity level 2 was introduced, a notable impact on 
the system's performance has been observed. Increased 
heterogeneity led to higher success ratios, lower rejection 
ratios, and improved resource utilization compared to the 
previous scenario. The research findings conclusively 
showcase the benefits of integrating heterogeneity into fog 
computing systems. Level 3 of heterogeneity, with MDCs 
having processing capacities from 2000 to 5000 MIPS, 
demonstrates exceptional performance with a 100% 
success ratio and 0% rejection ratio, even with a low 
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In the second scenario (“Fig. 5”), where MDC 
heterogeneity level 2 was introduced, a notable impact on 
the system's performance has been observed. Increased 
heterogeneity led to higher success ratios, lower rejection 

on compared to the 
previous scenario. The research findings conclusively 
showcase the benefits of integrating heterogeneity into fog 

3 of heterogeneity, with MDCs 
having processing capacities from 2000 to 5000 MIPS, 

ceptional performance with a 100% 
success ratio and 0% rejection ratio, even with a low 

count of MDCs. These MDCs efficiently handle diverse 
workloads, ensuring timely completion of all tasks. Also 
the resource utilization is optimized. Overall, this 
heterogeneous resource utilization maximizes system 
efficiency and performance, making it ideal for fog 
computing systems with dynamic workload variations.

F. Influence of α on Fog Computing (Heterogeneity 
Level 1) 

As depicted in “Fig. 6”, the data analysis focuse
the impact of varying α values (ranging from 1 to 6) on 
fog computing systems. Heterogeneity factor α represents 
the percentage of fast Mobile Data Centers (MDCs) in 
case of FHM. The study examines the effect of α
success ratio, rejection ratio, and resource utilization 
under both loose and tight deadline scenarios. The 
analysis considers 400 jobs, 10 MDCs, 1 CDC and a 
heterogeneity level 1. 
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count of MDCs. These MDCs efficiently handle diverse 
workloads, ensuring timely completion of all tasks. Also 
the resource utilization is optimized. Overall, this 

ogeneous resource utilization maximizes system 
efficiency and performance, making it ideal for fog 
computing systems with dynamic workload variations. 

Influence of α on Fog Computing (Heterogeneity 

he data analysis focuses on 
α values (ranging from 1 to 6) on 

fog computing systems. Heterogeneity factor α represents 
the percentage of fast Mobile Data Centers (MDCs) in 
case of FHM. The study examines the effect of α value on 

, and resource utilization 
under both loose and tight deadline scenarios. The 
analysis considers 400 jobs, 10 MDCs, 1 CDC and a 
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(c) 

(d) 

Figure 6.  α influence on (a)Success Ratio, (b) Rejection Ratio, (c) 
MDC Resource Utilization and (d) CDC Resource Utilization in 
Homogeneous and Heterogeneous Fog Computing Systems at 

Heterogeneity Level 1 

The results indicate that increasing α result in higher 
success ratios, irrespective of the deadline scenario. This 
suggests that a higher proportion of α leads to improved 
task success rates. Moreover, higher α value corresponds 
to lower rejection ratios in both loose and tight deadline 
scenarios. This implies that a greater availability of fast 
MDCs facilitates efficient task allocation and 
reducing the number of rejected tasks. Generally, higher α
value contributes to improved resource utilization across 
different deadline scenarios.  These insights contribute to 
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The results indicate that increasing α result in higher 
success ratios, irrespective of the deadline scenario. This 

roportion of α leads to improved 
task success rates. Moreover, higher α value corresponds 
to lower rejection ratios in both loose and tight deadline 
scenarios. This implies that a greater availability of fast 
MDCs facilitates efficient task allocation and scheduling, 

Generally, higher α 
value contributes to improved resource utilization across 
different deadline scenarios.  These insights contribute to 

the ongoing efforts in enhancing the overall performance 
and resource efficiency of fog computing systems.

G. Influence of α on Fog Computing (Heterogeneity 
Level 2) 

In the context of heterogeneity level 1(
analysis considering both loose and tight deadlines yields 
intriguing results. When compared 
level 2 as depicted in “Fig. 7”, heterogeneity level 2 
consistently outperforms the 3000
heterogeneity case for both loose and tight deadlines. The 
higher success ratios in the heterogeneity level 2 scenario 
indicate enhanced task completion rates.
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Upon analyzing the rejection ratios in both 
heterogeneity level 1 and 2 scenarios, a decreasing trend 
as the α values increase, indicating improved task 
allocation strategies. However, heterogeneity level 2 
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the ongoing efforts in enhancing the overall performance 
efficiency of fog computing systems. 

Influence of α on Fog Computing (Heterogeneity 

In the context of heterogeneity level 1(“Fig. 6”), the 
analysis considering both loose and tight deadlines yields 

 with heterogeneity 
, heterogeneity level 2 

consistently outperforms the 3000-4000 MIPS 
heterogeneity case for both loose and tight deadlines. The 
higher success ratios in the heterogeneity level 2 scenario 

rates. 
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consistently exhibits lower rejection ratios compared to 
heterogeneity level 1 for both loose and tight deadlines.
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Figure 7.  α influence on (a)Success Ratio, (b) Rejection Ratio, (c) 
MDC Resource Utilization and (d) CDC Resource Utilization in 
Homogeneous and Heterogeneous Fog Computing Systems at 

Heterogeneity Level 2 

In terms of resource utilization, the heterogeneity level 
2 scenario with 2500-4500 MIPS demonstrates superior 
resource utilization in both MDCs and CDC compared to 
the heterogeneity level 1 scenario with 3000
This suggests more efficient utilization of computational 
resources, leading to higher overall system performance.
In conclusion, the analysis considering both loose and 
tight deadlines highlights that the heterogeneity level 2 
scenario (as depicted in Figure 6.7) outperforms the 
heterogeneity level 1 scenario (as shown in Figure 6.6) in 
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rejection ratios compared to 
heterogeneity level 1 for both loose and tight deadlines. 

 

 

α influence on (a)Success Ratio, (b) Rejection Ratio, (c) 
MDC Resource Utilization and (d) CDC Resource Utilization in 

uting Systems at 

In terms of resource utilization, the heterogeneity level 
4500 MIPS demonstrates superior 

resource utilization in both MDCs and CDC compared to 
the heterogeneity level 1 scenario with 3000-4000 MIPS. 
This suggests more efficient utilization of computational 
resources, leading to higher overall system performance. 
In conclusion, the analysis considering both loose and 
tight deadlines highlights that the heterogeneity level 2 

Figure 6.7) outperforms the 
heterogeneity level 1 scenario (as shown in Figure 6.6) in 

terms of success ratio, rejection ratio, and resource 
utilization.  

7. CONCLUSIONS AND FUTURE 

Fog computing plays a crucial role in the IoT era, 
bringing computing resources closer to IoT devices for 
reduced latency. Our research thoroughly explores fog 
computing system performance, focusing on 
heterogeneity impact. The study examines varied deadli
constraints, Mobile Data Center (MDC) count, and 
heterogeneity integration. The Fixed Heterogeneity Model 
(FHM) and Mixed Heterogeneity Model (MHM) show 
practical applications in smart cities, healthcare, and smart 
manufacturing. FHM aids in efficient t
MHM dynamically allocates processing capacities for 
healthcare tasks, and both contribute to predictive 
maintenance in manufacturing. These models outperform 
the Homogeneous Architecture, 
success ratio, reduced rejection ratio
resource utilization. The study emphasizes the importance 
of heterogeneity and resource management in fog 
computing, offering insights for real
Future research avenues include exploring the integration 
of edge computing technologies and artificial intelligence 
to improve decision-making and resource management in 
fog computing environments for increased efficiency and 
performance. 
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