
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 15, No.1 (Mar-24)

http://dx.doi.org/10.12785/ijcds/150191

A Parallel Approach of Cascade Modelling Using MPI4Py on
Imbalanced Dataset

Suprapto1,*, Wahyono2, Nur Rokhman3 and Faisal Dharma Adhinata4

1-3Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia
4Faculty of Informatics, Institut Teknologi Telkom Purwokerto, Banyumas, Indonesia

Received 26 Dec. 2023, Revised 23 Feb. 2024, Accepted 2 Mar. 2024, Published 10 Mar. 2024

Abstract: Machine learning is crucial in categorizing data into specific classes based on their features. However, challenges emerge,
especially in classification, when dealing with imbalanced datasets. An imbalanced dataset occurs when there is a disproportionate
number of samples across different classes. It leads to a machine learning model’s bias towards the majority class and poor recognition
of minority classes, often resulting in notable prediction inaccuracies for those less represented classes. This research proposes a cascade
and parallel architecture in the training process to enhance accuracy and speed compared to non-cascade and sequential. This research
will evaluate the performance of the SVM and Random Forest methods. Our findings reveal that employing the Random Forest method,
configured with 100 trees, substantially enhances classification accuracy by 4.72%, elevating it from 58.87% to 63.59% compared
to non-cascade classifiers. Furthermore, adopting the Message Passing Interface for Python (MPI4Py) for parallel processing across
multiple cores or nodes demonstrates a remarkable increase in training speed. Specifically, parallel processing was found to accelerate
the training process by up to 4.35 times, reducing the duration from 1725.86 milliseconds to a mere 396.54 milliseconds. These results
highlight the advantages of integrating parallel processing with a cascade architecture in machine learning models, particularly in
addressing the challenges associated with imbalanced datasets. This research demonstrates the potential for substantial improvements in
classification tasks’ accuracy and efficiency.

Keywords: Cascade classifier, Imbalanced data, MPI4Py, Parallel processing, SVM

1. Introduction
Data classification using machine learning is a process

where computer algorithms are trained to differentiate and
categorize data into certain classes or groups based on the
features of the data [1]. This process begins with a training
phase, where the model is given a dataset that has been
properly labeled. Each data entry in this dataset has features
representing relevant characteristics and a label indicating
its class. The algorithm gradually adjusts its weights and
inter-parameters during training to minimize prediction er-
rors. Challenges often arise in classification using machine
learning when dealing with imbalanced datasets [2][3]. In
the real world, imbalanced datasets usually occur because
one event or object occurs less frequently than another [4].
For example, cases of specific diseases, such as rare tumors
or certain medical conditions, may be much fewer than
normal images or more common conditions. Then, action
recognition can occur in an imbalanced dataset when more
images are taken for specific actions or there are more
sources on the internet for specific actions.

Imbalanced datasets have an uneven class distribution,
which can result in the model being biased and favoring the

majority class. It is a severe problem in many applications,
such as action recognition, where this research uses this
dataset. Action recognition is the process of identifying
and understanding the subject’s activity or behavior in an
image [5]. It is an important branch of computer vision
and machine learning that focuses on interpreting images to
detect and classify various types of movement or activity.
Action recognition on imbalanced data is a significant
challenge in computer vision and machine learning because
models tend to be biased towards the more dominant class in
the dataset [6][7]. Imbalanced data occurs when the number
of samples for different action classes is not comparable,
resulting in poor recognition performance for classes with
fewer representations. Apart from that, the training speed
is also considered so that the proposed method is time
efficient. This research aims to solve the problem of im-
balanced data for accurate and efficient action recognition
case studies. So, the contribution to this research is how
to handle imbalanced data using machine learning, which
considers accuracy and training speed.

Various approaches are used to overcome the problem
of imbalanced data. Previous research used deep learning

E-mail address: sprapto@ugm.ac.id, wahyo@ugm.ac.id, nurrokhman@ugm.ac.id,
faisal@ittelkom-pwt.ac.id

https:// journal.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/150191
https://journal.uob.edu.bh


1290 Suprapto, et al.: A Parallel Approach of Cascade Modelling Using MPI4Py on Imbalanced Dataset

through a modified transfer learning model to overcome the
problem of imbalanced datasets in the case of pattern recog-
nition [7]. The use of deep learning indeed automates the
feature extraction process in images. However, the dataset
is not very large, so the resulting accuracy is not good.
Therefore, in this study, we propose another approach. One
strategy for overcoming this problem is to use a cascade
classifier [8]. Currently, the development of the cascade
classifier method is still focused on increasing accuracy.
Lu and Guo have developed a cascaded traffic classifier
that integrates binary and multiclass sub-classifiers, en-
hancing the precision of flow-level traffic classification
[9]. Neugebauer et al. have introduced two methods for
preprocessing data that enhance the effectiveness of cascade
classifiers by making the decision boundaries more selective
[10]. Meanwhile, Xu and Yuan have designed an enhanced
AdaBoost classifier specifically for sonar images, resulting
in superior classification accuracy [11]. These three studies
still focus on accuracy, but there is still a long way to go
in terms of training speed.

Accuracy is an important aspect in developing machine
learning models such as cascade classifiers, but speed is also
a crucial factor that must be considered. There are several
strategies to speed up the cascade classifier process. One
strategy enables them to be satisfied more readily and with
fewer features, thus reducing the overall number of features
the cascade utilizes [12]. Furthermore, a comprehensive
algorithm has been suggested that conceptualizes cascade
training as a tree search procedure, which helps minimize
the total number of features required by the cascade [13].
Reducing the number of features can eliminate important
features in the image. Therefore, in this research, we
propose using parallel processing in the training stage of
cascade classification.

The training process can be very time-consuming be-
cause each cascade stage is usually trained sequentially,
where each classifier must be powerful enough to recognize
complex actions while ensuring that irrelevant data is elimi-
nated efficiently. In this research, we propose using parallel
processing in the training stage. With parallel processing,
large computing tasks are divided into smaller sub-processes
that can be executed simultaneously on different processors
or computers in a network [14]. It reduces training time
significantly because distributed processing allows many
operations to be performed simultaneously rather than se-
quentially. The strong point in parallel processing is that
each cascade stage can train its classifier on different subsets
of the data in parallel. In this research, the parallel process-
ing method is the Message Passing Interface for Python
(MPI4Py). The choice to use MPI4Py is because MPI4Py
has become the industry standard for parallel programming
in high-performance computing environments [15]. Then,
MPI4Py also provides a relatively easy interface [16], so
developers can easily learn it.

This research uses parallel processing to optimize the

training speed of the cascade classifier. This research will
also compare the performance of Joblib with MPI4Py for
parallel processing at the training stage. In this research, the
training method used is Support Vector Machine (SVM) or
Random Forest. SVM [17] and Random Forest [18] are
examples of machine learning methods used for classifica-
tion. SVM is very powerful because of its ability to handle
high-dimensional data and its effectiveness in cases where
the number of features exceeds the number of samples
[19]. On the other hand, Random Forest is an ensemble
algorithm consisting of many decision trees. Random Forest
is known for its ability to reduce overfitting [20], which
often occurs in single decision trees, and its ability to handle
large datasets with high dimensions.

There are several sections in the structure of this paper.
Section 2 is a literature review containing the strengths
and weaknesses of related previous research. Section 3 is
a research methodology that explains the steps for a cas-
cade classifier using parallel processing and its evaluation.
Section 4 contains results and discussion related to research
experiments. Section 5 is the conclusion of this research.

2. RelatedWork
The challenge of data imbalance in action recogni-

tion significantly impacts the performance and accuracy of
recognition systems [7]. This research introduces Occam-
Nets, a novel neural network architecture that mitigates
dataset bias by inherently favoring simpler hypotheses.
However, the accuracy of the results could be improved.
Recent studies have explored various methods, including
cascade classifiers, to address this challenge and enhance
the accuracy of imbalanced data. Cascade classifiers, which
leverage machine learning, offer greater accuracy than
single machine learning classifiers [21]. These classifiers
divide the data flow into multiple stages, with each focusing
on a specific aspect of the classification task. This method
has significantly improved the overall recognition accuracy
in various tasks, such as physical activity recognition [22],
sentiment analysis of tweets [23], and weather forecasting
[24]. The structure of cascade classifiers enhances gener-
alization performance and stability in classification tasks,
surpassing conventional single classifiers. Furthermore, cas-
cade classifiers can optimize the accuracy of any state-of-
the-art classifier, making them an asset in machine learning
research. However, the primary limitation of cascade clas-
sifiers is their lengthy training time. Mukabe et al. [25]
found a critical regarding training time reveals that Neural
Networks, especially retrained models, train significantly
faster than Haar Cascades. For instance, a neural network
model retrained on 3,454 images across different classes
completed its training in less than an hour (approximately
40 minutes), achieving a test accuracy of 92%. In contrast,
Haar Cascades training took considerably longer, with a
cascade completing all 20 stages of its training in over a day
(25 hours), achieving a Hit Rate (HR) of 99.52% and a False
Alarm Rate (FA) of 47.44%. Annamraju and Singh [26]
also focused on optimizing parameters for training cascade

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 15, No.1, 1289-1302 (Mar-24) 1291

classifiers using Local Binary Pattern (LBP) and Histogram
of Gradients (HOG) features to enhance object detection
tasks’ efficiency. They established optimal ranges for vari-
ous parameters through experimental analysis, resulting in
an average training time of 25,000 seconds (approximately
6.94 hours) for classifiers. With these optimized parameters,
the classifier achieved an average true positive detection rate
of 88% on a test set of 4,000 images. Wahyono et al. [27]
research highlighted the significantly longer training time
associated with cascade modelling, nearly four times that of
non-cascade models (2403.47 ms vs. 700.95 ms). Although
accuracy could be improved, these findings suggest further
enhancements to increase efficiency and accuracy. There-
fore, employing a cascade classifier can improve accuracy
in classification case studies. Nonetheless, training speed
emerges as a separate challenge from efficiency. Therefore,
the proposed research focuses on accelerating training times
and enhancing accuracy beyond previous studies.

3. ResearchMethodology
Action recognition on imbalanced data using the cascade

classifier method in machine learning. Figure 1 shows
the action recognition process in this research. The action
recognition stage begins with data acquisition in the form
of action data. Then, the data goes through a pre-processing
stage, where resizing and color conversion to grayscale are
carried out to prepare the data before feature extraction.
Next, the image is feature extracted using the Histogram of
Oriented Gradients (HOG), Local Binary Patterns (LBP),
or Scale-Invariant Feature Transform (SIFT) methods, all
three of which are popular techniques for visual feature
extraction in image processing. After the features have been
successfully extracted, the next stage is data training using
a cascade classifier in machine learning, which is optimized
using Joblib or MPI4Py to speed up the training process.
The final stage is to make predictions to evaluate accuracy.

A. Data Acqusition
The Biased Action Recognition (BAR) dataset is a

collection of real-world images that are organized into six
categories of actions. These categories are intentionally
associated with specific locations. The selection of these six
categories was done meticulously by reviewing the imSitu
database, which contains various still images depicting
actions sourced from Google Image Search, each tagged
with the type of action being performed and the location
[6]. The categories of actions tend to occur in recognizable
locations. These locations needed to be unique enough for
each action that one could determine the type of action
based on the associated location alone. Figure 2 shows an
example of the dataset used in this research.

In this research, the amount of data in each class is
different, called imbalanced data [28]. Figure 3 shows the
distribution of each class in this research dataset. Even in
the Fishing class, the amount of data is three times less
than in the Diving class. So, the majority class (Diving)

Figure 1. Stages of research method

Figure 2. Example of dataset in this research

has many samples, while the minority class (Fishing) has
very few samples. In contrast to the iris flower dataset,
this dataset contains 150 samples from three different iris
species (setosa, versicolor, virginica), each with 50 samples
[29]. The same number of samples for each species makes
this dataset an example of a balanced dataset.

B. Data Pre-processing
Resizing an image dataset is crucial in utilizing His-

togram of Oriented Gradients (HOG), Local Binary Patterns
(LBP), and Scale-Invariant Feature Transform (SIFT) for
machine learning, mainly when the dataset includes images
of varying sizes. The main reason is that HOG, LBP, and
SIFT describe objects’ local texture, shape information,
and key points in images by calculating the distribution

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


1292 Suprapto, et al.: A Parallel Approach of Cascade Modelling Using MPI4Py on Imbalanced Dataset

Figure 3. Example of dataset in this research

of gradient or edge directions, local intensity patterns,
and scale-invariant features, respectively. For the features
extracted by HOG, LBP, and SIFT to be consistent and
comparable between images, each image in the dataset
must have uniform dimensions. If the image size varies, the
gradient distribution, local intensity patterns, and detected
key points will differ significantly, causing mismatches in
feature representation. This research utilized resizing to 64
x 64 to ensure uniformity [30]. The next pre-processing
stage involves color conversion from Red, Green, and Blue
(RGB) to grayscale. This conversion is pivotal as it adjusts
the use of the HOG, LBP, and SIFT features, which do
not require multichannel information. Additionally, using
grayscale images eliminates unnecessary information, such
as RGB colors, while preserving and highlighting edge,
texture, and key point information for pattern recognition,
making it more effective for the analysis with HOG, LBP,
and SIFT.

C. Feature Extraction
The choice of feature extraction method should be based

on the specific characteristics of the data used and the goal
of the computer vision application. HOG is better suited for
applications that require robust shape and texture analysis
[31], LBP is suitable for applications that require efficient
texture recognition [32] and SIFT is ideal for applications
that require robustness to scale changes and rotation [33].

1) HOG
Image feature extraction using HOG is a technique in

image processing and computer vision used to identify
objects in images [34]. This process begins with image
normalization to reduce lighting and shadow variations.
Then, the image is divided into small cells (usually 8x8

Figure 4. HOG method

pixels). Each pixel’s gradient (direction and strength) for
each cell is calculated. The next step is to calculate the
oriented gradient histogram in each cell. This histogram
depicts the frequency of gradient directions in that cell.
These cells are then grouped into larger blocks, and the
histograms of the cells within the blocks are normalized to
increase robustness to lighting changes. The HOG feature of
the entire image is generated by combining these histograms
of all blocks. Figure 4 shows an illustration of HOG.

In this research, the HOG configuration uses orientation
8, which determines that the gradient histogram will have
8 orientation bins. This means the gradient direction in
each cell will be divided into 8 different directions. Second,
pixels per cell is used (16,16), which sets the size of
each cell to 16x16 pixels. The gradient histogram will be
calculated in a 16x16 pixel grid across the entire image.
Third, cells per block (1,1) indicates that each block (for
histogram normalization) will consist of 1x1 cells. This
means there is no additional grouping of cells within blocks,
and each cell will be considered its block. Fourth, visualize
True, which indicates that the function will also return a
HOG visualization image in addition to the HOG feature
vector. It is useful for understanding how HOG represents
imagery. Finally, multichannel=False indicates that the in-
put image is a grayscale image and not a multichannel
image (like RGB). This configuration overall determines
how HOG features are calculated and represented from a
given image, focusing on gradient orientation, cell size,
block normalization, visualization, and image channel type.

2) LBP
The Local Binary Patterns (LBP) method is a popular

approach in image processing and texture analysis, which
was first introduced by Ojala et al. in the 1996 [35]. The
essence of this method is to change the pixel values in the
image into a binary pattern by comparing the pixel values
with the values of neighboring pixels. This process is carried
out by surrounding the target pixel with a circle containing
several sample points and then comparing the target pixel
values with the pixel values at those sample points. If the
value of a neighboring pixel is greater than or equal to
the central pixel, then it is given a binary value of 1, and
if it is smaller, it is given a value of 0. The results of
this comparison are then converted into a binary value and
interpreted as a decimal value to obtain the LBP pattern for
that pixel.

The configuration of the LBP method in this research

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 15, No.1, 1289-1302 (Mar-24) 1293

Figure 5. LBP method

Figure 6. SIFT method [36]

uses the feature.local binary pattern function to calculate
the LBP pattern from the image, where P=8 determines
the number of neighboring points used for comparison in
the LBP circle, and R=1 determines the circle’s radius. The
uniform method is used to calculate a uniform LBP pattern.
Then, the function calculates a histogram from the LBP
values obtained with np.histogram, where the histogram is
set to have bins according to the number of possible LBP
patterns plus margin. The histogram is then normalized by
dividing each value by the total number of values in the
histogram plus a minimal value (1e-7) to avoid dividing by
zero. Finally, the function returns the normalized histogram
as a representation of the LBP features of the image. Figure
5 shows an illustration of LBP.

3) SIFT
Scale-Invariant Feature Transform (SIFT) is a feature

extraction method used in image processing to identify and
describe local features of images in an invariant manner
to scale, rotation, and lighting changes. SIFT works in
several main stages: first, it detects extreme points in scale
space by using the Difference of Gaussian (DoG) to identify
potential key points that stand out at various scales. Second,
more precise selection and localization of key points by
eliminating key points with low contrast or those located at
the edges. Third, determining the orientation for each key
point is based on the surrounding local gradient, allowing
invariance with rotation. Finally, it creates a descriptor for
each key point by collecting local gradients around it in
an orientation histogram, which produces a powerful and
information-rich feature vector.

In this research, the SIFT program configuration will
determine the maximum number of desired features. After
that, the program initializes the SIFT detector and uses
the detectAndCompute method to detect key points and

Figure 7. Cascade modelling

calculate SIFT descriptors from the grayscale image. Since
the number of generated descriptors can vary, the program
following handles normalization of the number of features:
if the descriptor is None, it is flattened, and if the number of
features is less than the desired maximum number, padding
with zeros is performed to reach that maximum number. If
the number of features exceeds the maximum limit, they are
truncated. If no descriptors are found, the function returns a
null array with the size of the maximum number of features.
Figure 6 shows an illustration of SIFT.

D. Training Data
We use six data classes, so the cascade classifier function

has six models. The training configuration in this research
uses one positive class and five other classes as negative
classes. Our research used a division of training and testing
data with a composition of 80:20. Each class is trained via
a loop for single processing. Then, for parallel processing
training, this research uses joblib and MPI4Py provided by
the Python library. In this research, we will compare the
performance of the SVM and Random Forest methods.

The SVM method is a machine learning technique for
classification [19] and regression [37]. Figure 7 shows the
cascade model in this research. At its core, SVM creates a
hyperplane or series of hyperplanes in a multidimensional
space separating different data classes. The uniqueness
of SVM lies in how it chooses a hyperplane with the
largest margin between two data classes, which means this
hyperplane not only separates the two classes but is as far
away as possible from the closest data points from the two
classes.

Random Forest is a machine learning method in the

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


1294 Suprapto, et al.: A Parallel Approach of Cascade Modelling Using MPI4Py on Imbalanced Dataset

ensemble learning algorithm category [38]. This algorithm
combines many decision trees to create a more powerful and
accurate model. Each tree in a Random Forest is trained on
a random subset of the data using a sampling technique with
replacement, known as bootstrap sampling. Additionally, at
each split in the tree, only a random number of features
are considered, which increases diversity among trees and
reduces the risk of overfitting. When making predictions,
Random Forest takes a voting approach. The most common
output from all trees is the final prediction for classification
tasks.

E. Pseudocode of Action Recognition
The pseudocode of the action recognition classification

system that implements parallel processing is shown in
Figure 8. MPI initialization contains a comm used to
carry out communication and management operations in
MPI. Then, rank is used to identify individual processes
in MPI operations. Then, size is a variable that stores
the total number of these processes. Then, implement data
acquisition via the load images function, which retrieves
the images in the folder.

The data pre-processing uses resizing and color conver-
sion from RGB to grayscale. Then, the features of the pre-
processed image are extracted using HOG, LBP, or SIFT.
Next, the extraction of image data features using the HOG,
LBP, or SIFT method is carried out by the HoG, LBP, or
SIFT function. Then, the training data function is used to
process training data using machine learning. This research
used SVM and Random Forest methods for training data.

The last function is the cascade predict, which predicts
testing data using the cascade classifier model. Predictions
using a cascade classifier have as input a series of classifiers
and thresholds. For each classifier in the cascade sequence,
this function will calculate the probability of a positive
prediction and divide the samples into two groups: those
that are accepted (probability above the threshold) and those
that are rejected (below or equal to the threshold). Accepted
samples are labelled with the current classifier index, while
rejected samples are prepared for the next iteration. This
process continues until all samples are processed, or all
classifiers in the cascade have been used. If samples still
have not been predicted after passing through all classifiers,
this function uses the last classifier to make a final predic-
tion. The result is a list containing the index of the classifier
that accepted each sample, indicating at which stage in the
cascade the sample was accepted or rejected. This approach
increases efficiency and reduces false positives, as only the
most likely positive samples proceed through all cascade
stages.

In the algorithm section, a training process is carried
out in cascade modelling using parallel processing. In
this research, MPI4Py is used for parallel processing. For
comparison, we also use Joblib.

Figure 8. Pseudocode of cascade classification

1) Training Data using MPI4Py
MPI4Py is a Python library that allows Python programs

to communicate using the Message Passing Interface (MPI)
[15], a widely used standard for parallel programming in
high-performance computing environments [39]. The first
step is to send training and testing data to all multi-core
nodes using the broadcast function. Then, the division of
work uses input rank and size, where the division of work
in each process will be responsible for a certain class subset.
Then, each node carries out data training according to the

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 15, No.1, 1289-1302 (Mar-24) 1295

Figure 9. Parallel processing stages using MPI4Py

division. Collecting final training results at the root node
using the gather function. Once complete, the root process
will list all the classifiers that all processes have trained.
Figure 9 shows the parallel processing using MPI4Py in
this research.

The ideal use of parallel processing is usually measured
using Amdahl’s law. In this research, execution time was
measured only during the training process. Amdahl’s law
formula is shown in Equation (1).

Speedup =
1

(1 − P) + P
N

(1)

where P is the proportion of programs that can be
parallelized, N is the number of processor cores used, and
(1−P) is the proportion of programs that must be executed
sequentially.

In this research, execution time was carried out at the
training stage, so the P value was 100%. Therefore, if the
number of processor cores used in parallel processing is
four, the ideal speedup value is four times.

2) Training Data using Joblib
The use of joblib is to include training iterations in

parallel. A Parallel class in joblib is used to perform parallel
operations [40][41]. The Parallel object takes the argument
n jobs, which specifies the number of processes or threads
used in parallel. If n jobs=-1, then all available CPU cores
will be used. Then, there is a delayed function, which wraps
functions that want to run in parallel. It is necessary because
parallel does not accept functions called directly with their

Figure 10. Parallel processing stages using joblib

arguments. Delayed creates a version of the function that
is not immediately executed. Figure 10 shows the joblib
stages in this research.

The use of joblib in this research begins with input in the
form of a list of training and testing data. Then, define the
function that will be parallelized, namely the data training
function using SVM. The next step is to use joblib.Parallel
and joblib.delayed to set up parallel processing. This joblib
has input to determine the number of parallel jobs to be run.
After that, the defined function is applied to each element in
the training and testing data list. The results of each parallel
job are collected, and the process ends once all the results
have been collected. This process effectively utilizes parallel
processing capabilities to increase the efficiency and speed
of data processing for training needs.

F. System evaluation
This research will evaluate action recognition classifica-

tion using the accuracy obtained from classification report
in Python. Accuracy is calculated by adding up all correct
predictions (true positives and true negatives) and dividing it
by the total number of predictions (the sum of true positives,
true negatives, false positives, and false negatives) [42].
The accuracy formula is shown in equation (2). The result
measures the action recognition model’s effectiveness in
correctly classifying samples. In this research, the accuracy
results of the SVM and Random Forest methods and other
supervised learning methods will be evaluated.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


1296 Suprapto, et al.: A Parallel Approach of Cascade Modelling Using MPI4Py on Imbalanced Dataset

Accuracy =
T P + T N

T P + T N + FN + FP
(2)

Then, evaluate parallel processing using speedup and
speedup. Speed refers to the time required to complete a
task or program using parallel processing. By dividing a
task into several sub-tasks that run simultaneously on a
multicore processor, the time to complete the overall task
is significantly reduced compared to running the same task
sequentially on a single processor. Then, speedup measures
how fast a program runs on p systems (for example, p
processors) compared to running on just one system. The
speedup formula is shown in equation (3) [41]. The main
goal of parallel processing is to achieve significant speedup,
enabling the completion of more complex and large tasks
in less time.

S (p) =
T (1)
T (p)

(3)

T (1) is the execution time on one processor, and T (p)
is the time on p processors.

4. Results and Discussion
A. Hardware and Software Specifications

Using hardware on a single computer with a multicore
greatly affects parallel processing performance because each
core on the processor can run processes or threads indepen-
dently, allowing simultaneous execution of various tasks.
In the context of parallel processing, tasks that previously
had to be executed sequentially can now be split up and
executed simultaneously across multiple cores. It signif-
icantly increases throughput and reduces total processing
time. This research used a Core i5 computer with 6 Core
CPU and 8GB RAM. This multicore architecture will be
used to evaluate parallel processing.

This research uses several Python libraries for the
action recognition process: NumPy, Scikit-learn, Scikit-
image, Joblib, and MPI4Py. NumPy is a fundamental li-
brary supporting large-dimensional arrays and mathematical
operations. Scikit-learn, often abbreviated to sklearn, is a
library that provides simple and effective tools for data
analysis and machine learning. Scikit-image or skimage is a
library aimed at image processing, providing tools for image
manipulation and feature extraction often required in com-
puter vision. Joblib, with Parallel and delayed modules, is
used for simple and efficient task parallelization, which can
significantly speed up heavy computing. Finally, MPI4Py is
a Python implementation of the Message Passing Interface
(MPI) for writing programs that can be run in parallel. In
this research, the experiments carried out were the influence
of threshold on cascade classification, the influence of the
kernel on SVM and the number of trees in Random Forest,
and the influence of the number of nodes on training speed.

TABLE I. THE ACCURACY RESULT OF THRESHOLD EFFECT

Threshold Accuracy

HOG LBP SIFT

0.9 28.59% 33.33% 14.36%
0.8 33.72% 34.36% 20.05%
0.7 39.36% 39.49% 24.62%
0.6 44.48% 45.64% 26.67%
0.5 48.59% 50.26% 28.72%
0.4 52.20% 54.36% 33.85%
0.3 53.72% 55.90% 46.67%
0.2 42.95% 45.64% 40.51%
0.1 26.02% 41.03% 28.21%

B. The Effect of Threshold in Cascade Classification
In the classification of imbalanced datasets using a

cascade classifier, threshold adjustments can have a sig-
nificant impact on model performance. Cascade classifiers
generally apply fast and efficient filters to reject non-target
areas quickly while maintaining correct detection. In this
experiment, the SVM kernel is the Radial Basis Function
(RBF), and the number of trees in the Random Forest is
100. Table I compares the accuracy results of the HOG,
LBP, and SIFT methods with the influence of threshold on
cascade classification.

Based on Table I, the best threshold value for the three
feature extraction methods is 0.3. Using a high threshold
from the experiments can make the classification results
more inaccurate. This threshold is small enough to in-
crease the model’s sensitivity to minority classes. A lower
threshold means that the model is more likely to classify
an example as a minority class, which helps reduce the
number of False Negatives (i.e., cases where objects from
the minority class are not detected).

Experimental results also show that LBP’s accuracy is
better than HOG and SIFT. In this research, object seg-
mentation was not carried out. So, background differences
can significantly influence classification performance. LBP
focuses on relative comparisons between pixels, tending to
be more robust to such changes than HOG and SIFT, which
are more sensitive to overall context and background varia-
tions. The SIFT feature extraction method emphasizes scale
and rotation invariance, which requires preprocessing or
further adjustments. So, SIFT requires focusing on objects
to produce relevant features. In contrast, LBP can be applied
directly to images without segmentation with information-
rich features [43]. Based on these results, the following
experiment will use a threshold value configuration of 0.3
and use the LBP feature extraction method.

C. The effect of parameters on supervised learning
In SVM experiments, the parameters to be evaluated

are kernel RBF, linear, and polynomial. Meanwhile, in the
Random Forest method, the number of trees is evaluated
at this stage. The number of trees evaluated is 20, 40, 60,

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 15, No.1, 1289-1302 (Mar-24) 1297

TABLE II. THE ACCURACY RESULT USING SVM

SVM Kernel Accuracy

RBF 55.90%
linear 48.72%
poly 52.31%

TABLE III. THE ACCURACY RESULT USING RANDOM FOR-
EST

Number of trees Accuracy

20 54.76%
40 55.27%
60 56.92%
80 58.87%

100 63.59%
120 59.90%

80, 100, and 120. The parameter configuration with the best
accuracy results will be used for experiments on the number
of datasets and parallel processing.

Table II shows that the best results are achieved using
the RBF kernel. The RBF kernel is effective in dealing
with non-linearities in the data. Imbalanced datasets tend to
have complex and non-linear decision boundaries. The RBF
kernel can map data to a higher dimensional space, where
the classes can be separated non-linearly, allowing the SVM
to make more precise classification decisions. The RBF
kernel also has adaptive properties to the local structure
of the data. It can adjust its decisions based on the local
distribution of data points, which is especially important for
minority classes that are often scattered or isolated in the
feature space. By adapting to this local distribution, the RBF
kernel can more accurately recognize and classify examples
from the minority class. Therefore, the next experiment will
use the RBF kernel on SVM.

When using the Random Forest method for classifying
imbalanced datasets, increasing the number of trees can help
the model overcome bias toward the majority class. Each
tree in the ensemble can explore different aspects of the
data, including the unique characteristics of the minority
class. With a large enough number of trees, there is a greater
likelihood that some trees will become ’specialists’ in
recognizing minority classes, thereby increasing the model’s
overall ability to classify samples from that class. So, in
this experiment based on Table III, the number of trees
was 100, resulting in optimal accuracy. However, there
is a saturation point where adding more trees does not
significantly improve performance, especially if the trees are
highly correlated. So, when the number of trees is increased
to 120, the resulting accuracy can decrease. Therefore, the
next experiment will use a number of trees of 100 for the
Random Forest method.

TABLE IV. THE ACCURACY RESULT USING RANDOM FOR-
EST

Dataset Proportion Accuracy
Non-cascade Cascade

25% 47.72% 50.52%
50% 55.83% 59.28%
75% 52.12% 56.01%

100% 58.87% 63.59%

D. The Effect of Dataset Number on Accuracy Results
In this experiment, the method used is the Random

Forest, utilizing many trees of 100. This configuration was
used because the accuracy results of this method produced
the best accuracy in previous experiments.

Table IV shows the accuracy results for the non-
cascade and cascade classifier. Cascade Classifiers have
better accuracy than a non-cascade classifier because of
their gradual and hierarchical decision-making approach.
An object is detected through a series of stages, each
consisting of a different classifier. Initial stages are usually
designed to quickly reject sub-regions of the image that
do not contain the target object, using a relatively simple
classifier. Subsequent stages become increasingly complex,
gradually focusing on more promising areas with more
accurate and detailed classifiers. The advantages of this
approach are efficiency and accuracy. Cascade Classifier can
quickly weed out irrelevant areas at low computational cost,
allowing more resources to be invested in analyzing more
challenging areas in detail. It differs from a non-cascade
classifier, which must analyze the entire image thoroughly,
which is often inefficient and can produce more errors in
the form of false positives and negatives.

E. The Effect of Parallel Processing on Training Stage
In this experiment, the SVM method uses the RBF

kernel, while the Random Forest method uses 100 trees. The
training time for non-parallel data using the SVM method is
1073.02 ms. Then, the data training time without parallelism
using the Random Forest method is 1725.86 ms. In this
experiment, the number of nodes used is 2, 3, and 6. This
number of nodes refers to the number of classes being 6 to
match the division of nodes.

Using Joblib and MPI for Python (MPI4Py) can signifi-
cantly increase the training speed of the cascade classifier on
a single machine with multi-cores. Joblib enables easy and
efficient parallelization of tasks, especially on multi-core
machines. By dividing the training tasks and running them
in parallel across multiple cores, the time required to com-
plete the training process can be reduced dramatically. It is
because Joblib effectively leverages modern machines with
multi-threading and multi-processing capabilities. On the
other hand, MPI4Py provides an interface for Message Pass-
ing Interface (MPI), enabling efficient data communication
between processes running in parallel. Although typically

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


1298 Suprapto, et al.: A Parallel Approach of Cascade Modelling Using MPI4Py on Imbalanced Dataset

used in distributed or cluster computing, MPI4Py can also
be leveraged in a multi-core single machine to optimize re-
source usage and synchronization between processes. With
MPI4Py, data and instructions can be transferred quickly
between different processes, minimizing waiting times and
increasing overall efficiency. Tables V and VI show the
training process results using parallel processing on SVM
and Random Forest methods.

Both using SVM and Random Forest, the resulting
speedup increases equally. With each additional processor
core, there is always an increase in speed. However, the
speedup value is not ideal, as proven by increasing the use
of cores on Joblib and MPI4Py. The speedup is not the same
as the number of cores used. The speed is not ideal because
there is overhead from parallelization management, namely
communication between processors and data sharing. Using
MPI4Py is faster than using Joblib. It happens because
of differences in how the two manage communication and
synchronization between processes. MPI4Py is based on the
Message Passing Interface (MPI), an industry standard for
highly efficient inter-process communication in distributed
and parallel computing. MPI is designed for large-scale
and high-performance computing. On the other hand, Joblib
focuses more on ease of use and integration with Python.

In the speedup results, the Random Forest method is
faster than SVM. Random Forest is an ensemble-based
algorithm with many independently trained decision trees,
making it suitable for parallel processing. Each tree in a
random forest can be built and trained independently of
the other trees to distribute tasks to various cores or nodes
in a parallel environment quickly and efficiently. It allows
maximum use of resources and results in significant speed
improvements.

In contrast, margin based SVM searches for optimal hy-
perplanes to separate data classes. The optimization process
used in SVM training, especially on multiclass datasets,
is often more complex and involves solving significant
optimization problems. So, it is inefficiently divided into
parallel tasks compared to Random Forest. Although in this
research, parallelization was carried out in SVM training,
such as decomposition of the training stage, the ability
of this algorithm to benefit from parallel processing is
generally less than optimal compared to Random Forest.
Thus, differences in algorithm architecture and ease of par-
allelization are the main reasons why Random Forest shows
better speedup in the training process on a cascade classifier
with parallel processing compared to SVM. Random Forest
naturally supports parallelization at a more granular level,
allowing for significant performance improvements when
using parallel processing techniques such as Joblib and
MPI4Py.

F. Discussion
Handling imbalanced datasets using a cascade classi-

fier involves several special strategies to overcome bias
towards more dominant classes. In this research, we used a

threshold of 0.3. This threshold is low enough to enhance
the model’s ability to detect minority classes. A reduced
threshold indicates that the model tends to identify a sample
as belonging to a minority class, thereby decreasing the
incidence of False Negatives. When using SVM, there is
an increase from 53.91% to 55.90% when using cascade
SVM. The best accuracy was produced using the Random
Forest with 100 trees, namely 63.59%, while when using
the non-cascade Random Forest, it was 58.87%. However,
compared to previous research, as shown in Table VII, this
result is better where previous research used deep learning.
The dataset in previous research also used the BAR dataset.
While deep learning models are powerful in recognizing
complex patterns and generally provide better performance
in classification, deep learning typically requires large and
balanced datasets for effective training, which is often a
challenge in the case of imbalanced datasets. Then, previous
research also applied a combination of HOG and cascade
SVM. The use of HOG is less appropriate in feature
extraction for datasets without this segmentation stage.
Besides that, the running time for the SVM cascade does
not use parallel processing, so the time spent on the training
process is 2403.47 ms. This differs from this research,
which uses parallel, which only takes 396.54 ms for the
training process.

Besides comparing the performance of deep learning in
the case of an imbalanced dataset, we also tested traditional
supervised learning, namely the Naı̈ve Bayes, Decision
tree, and K-Nearest Neighbor (KNN) methods. We also
use relatively new and popular machine learning methods,
namely XGBoost and LightGBM. The Naı̈ve Bayes method
uses the default parameter configuration from the Sklearn
library in Python language. Then, the Decision tree method
uses a Gini criterion configuration, and the minimum split
number of samples is two. Then, in the KNN method, the K
value is five, and the Euclidean distance is used to calculate
the distance. Then, configure XGBoost and LightGBM
using the defaults from the xgboost and lightgbm libraries.

The resulting accuracy is no better than using a cascade
classifier. The cascade classifier produces better accuracy
than traditional and latest supervised learning because it
works with a series of stages where each stage consists
of several weak classifiers. Each stage evaluates whether a
sample meets the criteria to proceed to the next stage. If
a sample fails at an early stage, it is immediately rejected,
reducing processing time for samples that are not targeted.
It is especially effective in the case of an imbalanced
dataset, where the majority of samples are negative (non-
target), because it allows the system to discard irrelevant
cases quickly. Figures 11 and 12 show the results of the
classification report using non-cascade and cascade Random
Forest.

In cascade Random Forest, there is an increase in F1-
Scores in several classes compared to non-cascade Random
Forest. Diving, fishing, racing, and vaulting activities had

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 15, No.1, 1289-1302 (Mar-24) 1299

TABLE V. THE RESULT OF PARALLEL PROCESSING USING SVM

Number of Nodes Joblib MPI4Py
Training
time (ms) Speedup Training

time (ms) Speedup

2 1302.51 0.82 727.28 1.47
3 827.37 1.29 506.26 2.12
6 581.61 1.84 303.65 3.53

TABLE VI. THE RESULT OF PARALLEL PROCESSING USING RANDOM FOREST

Number of Nodes Joblib MPI4Py
Training
time (ms) Speedup Training

time (ms) Speedup

2 1449.48 1.19 965.25 1.79
3 978.72 1.76 668.48 2.58
6 669.37 2.58 396.54 4.35

TABLE VII. COMPARISON WITH PREVIOUS RESEARCH

Method Accuracy

OccamResNet [7] 52.6%
HOG + Cascade SVM [27] 56.38%
KNN 51.41%
Naı̈ve Bayes 42.16%
Decision Tree 46.53%
SVM 53.91%
XGBoost 56.56%
LightGBM 58.44%
Random Forest 58.87%
Ours (LBP + Cascade Random Forest) 63.59%

Figure 11. Classification report using non-cascade Random Forest

Figure 12. Classification report using cascade Random Forest

higher F1 scores, indicating improved model performance in
classifying these activities. Through these results, the use of
cascade Random Forest can improve performance compared
to the use of non-cascade Random Forest. This increase also
affects the resulting accuracy value. Accuracy increases by
4.72% using cascade Random Forest.

Using cascade classification also presents challenges
in the data training stage. In this research, we propose
using parallel processing via Joblib and MPI4Py. The
experimental results are shown in Table V and VI. In
parallel processing using SVM, the resulting speedup was
3.53 using MPI4Py. Using MPI4Py can also speed up 4.35
times compared to sequential training with Random Forest.
Sequential training is a training stage that is sequential
or executed one by one while waiting for the model
training process to complete. These results demonstrate the
significant efficiency of the parallel approach. In sequential
training, each cascade stage must be trained one after
another. It can be a time-consuming process. In contrast,
with parallel processing, each node or core on the computer
can be assigned to carry out training simultaneously, which
makes training time more efficient.

The increase in training speed in this research is not yet
ideal, according to the increase in the number of cores used.
It happens because of overhead. Communication between
processes is a crucial factor. When the workload is shared
between cores, data must be frequently sent and received
between these processes. This program uses broadcast and
gather operations, so the time required to send and receive
data can be significant, especially if the data being trans-
ferred is large, such as features in an image.

The limitation of parallel processing is the ability to
break a dataset into parts that can be processed indepen-
dently without requiring too complex communication or
coordination between processors. If the dataset cannot be

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


1300 Suprapto, et al.: A Parallel Approach of Cascade Modelling Using MPI4Py on Imbalanced Dataset

split well, parallelization becomes less effective and may
increase processing time rather than decrease. Additionally,
the overhead associated with parallel processing must also
be considered, which includes the time required to initialize
and coordinate threads or processes, split data, combine
results, and manage shared memory access. This overhead
can be quite significant, especially on tasks with small
dataset sizes or relatively simple computations, where the
time gains generated by parallelization are insufficient to
cover the additional time spent on managing the overhead.
Therefore, parallel processing can improve performance for
specific tasks, but it needs to be carefully weighed in the
context of the overhead and characteristics of the dataset to
be processed.

5. Conclusion
Training data using a cascade classifier can increase

accuracy compared to a non-cascade classifier because the
cascade classifier approach allows more focused and grad-
ual processing. In a cascade classifier, objects are detected
through a series of stages, with each stage using a classifier
with a different class of data to quickly reject image areas
that do not contain the target object. This approach can
increase accuracy, where the accuracy using non-cascade
is 52.47%, then using the cascade classifier is 53.72%. It
shows that there is an increase in accuracy of 1.25%. On the
other hand, using parallel processing in cascade classifier
training can speed up the training process significantly.
This research proves that the training speed can increase
by 3.57 times using parallel processing compared to without
parallel processing. By using multicore capabilities, training
tasks can be run in parallel on various cores, reducing the
time required to complete the training process. Therefore,
combining a more accurate and efficient cascade classifier
approach with the speed offered by parallel processing
provides a very effective solution for increasing accuracy
and reducing training time in these action recognition im-
balanced data classification applications. In future research,
other feature extraction or supervised learning methods can
be explored to increase accuracy in imbalanced datasets.
The feature extraction method can also use a hybrid of
several methods, but the resulting computing time must still
be considered.

Acknowledgement
This research was funded by the Department of Com-

puter Science and Electronics, Universitas Gadjah Mada,
under Research laboratory Capacity Grant Year 2023
(120/UN1/FMIPA.1.3/TU/PT.01.03/2023).

References
[1] I. H. Sarker, “Machine learning: Algorithms, real-world applications

and research directions,” SN computer science, vol. 2, no. 3, p. 160,
2021.

[2] S. Yadav and G. P. Bhole, “Handling imbalanced dataset classifica-
tion in machine learning,” in 2020 IEEE Pune Section International
Conference (PuneCon). IEEE, 2020, pp. 38–43.

[3] Z. ao Huang, Y. Sang, Y. Sun, and J. Lv, “A neural network learning
algorithm for highly imbalanced data classification,” Information
Sciences, vol. 612, pp. 496–513, 2022.

[4] X.-F. Feng, L.-C. Yang, L.-Z. Tan, and Y.-G. Li, “Risk factor
analysis of device-related infections: value of re-sampling method
on the real-world imbalanced dataset,” BMC medical informatics
and decision making, vol. 19, pp. 1–8, 2019.

[5] M. G. Morshed, T. Sultana, A. Alam, and Y.-K. Lee, “Human action
recognition: A taxonomy-based survey, updates, and opportunities,”
Sensors, vol. 23, no. 4, p. 2182, 2023.

[6] J. Nam, H. Cha, S. Ahn, J. Lee, and J. Shin, “Learning from failure:
De-biasing classifier from biased classifier,” Advances in Neural
Information Processing Systems, vol. 33, pp. 20 673–20 684, 2020.

[7] R. Shrestha, K. Kafle, and C. Kanan, “Occamnets: Mitigating dataset
bias by favoring simpler hypotheses,” in European Conference on
Computer Vision. Springer, 2022, pp. 702–721.

[8] Y.-G. Fu, H.-Y. Huang, Y. Guan, Y.-M. Wang, W. Liu, and W.-J.
Fang, “Ebrb cascade classifier for imbalanced data via rule weight
updating,” Knowledge-Based Systems, vol. 223, p. 107010, 2021.

[9] G. Lu and R. Guo, “Cascaded classifier for improving traffic
classification accuracy,” Iet Communications, vol. 11, no. 11, pp.
1751–1758, 2017.

[10] J. Neugebauer, O. Kramer, and M. Sonnenschein, “Improving cas-
cade classifier precision by instance selection and outlier genera-
tion,” in International Conference on Agents and Artificial Intelli-
gence, vol. 2. SCITEPRESS, 2016, pp. 96–104.

[11] H. Xu and H. Yuan, “An svm-based adaboost cascade classifier for
sonar image,” IEEE Access, vol. 8, pp. 115 857–115 864, 2020.

[12] D. Sychel, P. Klsk, and A. Bera, “Relaxed per-stage requirements
for training cascades of classifiers,” in ECAI 2020. IOS Press,
2020, pp. 1523–1530.

[13] D. Sychel, P. Klesk, and A. Bera, “Branch-and-bound search for
training cascades of classifiers,” in International Conference on
Computational Science. Springer, 2020, pp. 18–34.

[14] U. M. Malik, M. A. Javed, J. Frnda, J. Rozhon, and W. U. Khan,
“Efficient matching-based parallel task offloading in iot networks,”
Sensors, vol. 22, no. 18, p. 6906, 2022.

[15] E. Oluwasakin, T. Torku, T. Sun, A. Yinusa, S. Hamden, S. Poudel,
J. Vargas, and K. N. Poudel, “Minimization of high computational
cost in data preprocessing and modeling using mpi4py,” Available
at SSRN 4455401, 2023.

[16] L. A. Barba, A. Klockner, P. Ramachandran, and R. Thomas, “Sci-
entific computing with python on high-performance heterogeneous
systems,” Computing in Science & Engineering, vol. 23, no. 04, pp.
5–7, 2021.

[17] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proceedings of the fifth annual
workshop on Computational learning theory, 1992, pp. 144–152.

[18] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[19] F. D. Adhinata, A. Harjoko, and Wahyono, “Object searching on

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 15, No.1, 1289-1302 (Mar-24) 1301

video using orb descriptor and support vector machine,” in Advances
in Computational Collective Intelligence: 12th International Confer-
ence, ICCCI 2020, Da Nang, Vietnam, November 30–December 3,
2020, Proceedings 12. Springer, 2020, pp. 239–251.

[20] C. Gao, H. Lin, and H. Hu, “Forest-fire-risk prediction based on
random forest and backpropagation neural network of heihe area in
heilongjiang province, china,” Forests, vol. 14, no. 2, p. 170, 2023.

[21] A. B. Shetty, J. Rebeiro et al., “Facial recognition using haar cascade
and lbp classifiers,” Global Transitions Proceedings, vol. 2, no. 2,
pp. 330–335, 2021.

[22] L. Mo, Y. Zhu, and L. Zeng, “A multi-label based physical activity
recognition via cascade classifier,” Sensors, vol. 23, no. 5, p. 2593,
2023.

[23] A. Yenkikar, C. N. Babu, and D. J. Hemanth, “Semantic relational
machine learning model for sentiment analysis using cascade feature
selection and heterogeneous classifier ensemble,” PeerJ Computer
Science, vol. 8, p. e1100, 2022.

[24] L. Chen, X. Zhong, F. Zhang, Y. Cheng, Y. Xu, Y. Qi, and H. Li,
“Fuxi: A cascade machine learning forecasting system for 15-day
global weather forecast,” npj Climate and Atmospheric Science,
2023.

[25] C. Mukabe, N. Suresh, V. Hashiyana, T. Haiduwa, and W. Sverdlik,
“Object detection and classification using machine learning tech-
niques: A comparison of haar cascades and neural networks.” New
York, NY, USA: Association for Computing Machinery, 2022, p.
86–97.

[26] A. Kumar Annamraju and A. Deep Singh, “Analysis and optimiza-
tion of parameters used in training a cascade classifier,” vol. 3, p. 25,
May 2015.

[27] W. Wahyono, Suprapto, A. Rezky, N. Rokhman, K.-H. Jo et al.,
“Handling imbalanced data using a cascade model for image-
based human action recognition,” Journal of Computing Science and
Engineering, vol. 17, no. 4, pp. 207–215, 2023.

[28] M. M. Taamneh, S. Taamneh, A. H. Alomari, and M. Abuaddous,
“Analyzing the effectiveness of imbalanced data handling techniques
in predicting driver phone use,” Sustainability, vol. 15, no. 13, p.
10668, 2023.

[29] Y. Chen, Z. Hua, Y. Tang, and B. Li, “Multi-source information
fusion based on negation of reconstructed basic probability assign-
ment with padded gaussian distribution and belief entropy,” Entropy,
vol. 24, no. 8, p. 1164, 2022.

[30] K. Lei and L. Yujing, “A new pedestrian detection method based on
histogram of oriented gradients and support vector data description,”
2024.

[31] Z. Xiang, H. Tan, and W. Ye, “The excellent properties of a dense
grid-based hog feature on face recognition compared to gabor and
lbp,” IEEE Access, vol. 6, pp. 29 306–29 319, 2018.

[32] X. Qian, X.-S. Hua, P. Chen, and L. Ke, “Plbp: An effective
local binary patterns texture descriptor with pyramid representation,”
Pattern Recognition, vol. 44, no. 10-11, pp. 2502–2515, 2011.

[33] L. Tang, S. Ma, X. Ma, and H. You, “Research on image matching
of improved sift algorithm based on stability factor and feature

descriptor simplification,” Applied Sciences, vol. 12, no. 17, p. 8448,
2022.

[34] K. T. Islam, S. Wijewickrema, R. G. Raj, and S. O’Leary, “Street
sign recognition using histogram of oriented gradients and artificial
neural networks,” Journal of imaging, vol. 5, no. 4, p. 44, 2019.

[35] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern recognition, vol. 29, no. 1, pp. 51–59, 1996.

[36] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, pp. 91–
110, 2004.

[37] F. Rustam, A. A. Reshi, A. Mehmood, S. Ullah, B.-W. On,
W. Aslam, and G. S. Choi, “Covid-19 future forecasting using
supervised machine learning models,” IEEE access, vol. 8, pp.
101 489–101 499, 2020.

[38] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A
review of applications and future directions,” ISPRS journal of
photogrammetry and remote sensing, vol. 114, pp. 24–31, 2016.

[39] K. Nölp and L. Oden, “Simplifying non-contiguous data transfer
with mpi for python,” The Journal of Supercomputing, pp. 1–22,
2023.

[40] A. R. J. Pangestu, R. Kurniawan, I. W. A. Swardiana, A. L. Latifah
et al., “Parallel computing implementation of marine heat waves
detection,” in 2023 International Conference on Computer, Control,
Informatics and its Applications (IC3INA). IEEE, 2023, pp. 436–
439.

[41] N. Nagy, M. Aljabri, A. Shaahid, A. A. Ahmed, F. Alnasser,
L. Almakramy, M. Alhadab, and S. Alfaddagh, “Phishing urls
detection using sequential and parallel ml techniques: Comparative
analysis,” Sensors, vol. 23, no. 7, p. 3467, 2023.

[42] T. Fawcett, “An introduction to roc analysis,” Pattern recognition
letters, vol. 27, no. 8, pp. 861–874, 2006.

[43] Z. Zhang and M. Wang, “A simple and efficient method for finger
vein recognition,” Sensors, vol. 22, no. 6, p. 2234, 2022.

Suprapto received the B.Sc. degree in
Computer Science from Universitas Gadjah
Mada, Indonesia, the Master Degree from
the University of Indonesia Sandwich Pro-
gram with University of Maryland Univer-
sity College, USA and the Ph.D. degree from
the Universitas Gadjah Mada, Indonesia. He
is an Associate Professor at the Department
of Computer Science and Electronics, Uni-
versitas Gadjah Mada, Indonesia. His re-

search interests include algorithm analysis and design, simulation,
computational logic, graph theory, and pattern recognition.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


1302 Suprapto, et al.: A Parallel Approach of Cascade Modelling Using MPI4Py on Imbalanced Dataset

Wahyono received the B.Sc. degree in
Computer Science from Universitas Gadjah
Mada, Indonesia, and the Ph.D. degree from
The University of Ulsan, South Korea. He is
an Associate Professor at the Department of
Computer Science and Electronics, Univer-
sitas Gadjah Mada, Indonesia. His research
interests include machine learning, computer
vision, and pattern recognition. He actively
participates as a member of the societies,

a reviewer in reputable international journals, and an editor in
several journals.

Nur Rokhman received the B.Sc., Mas-
ter, and Ph.D. degrees in Computer Science
from Universitas Gadjah Mada, Indonesia.
He is an Associate Professor at the Depart-
ment of Computer Science and Electronics,
Universitas Gadjah Mada, Indonesia. His
research interests include Computation, In-
formation Systems, and outlier detection. He
actively participates as a member of societies
and a reviewer in reputable international

journals.

Faisal Dharma Adhinata earned his Mas-
ter of Computer Science (M.Cs.) degree in
computer science from Universitas Gadjah
Mada, Indonesia. He is pursuing a Doctoral
Degree in Computer Science at the same
university. In addition, he serves as a lecturer
in the Department of Software Engineering
at Institut Teknologi Telkom Purwokerto,
Indonesia. His research areas include Ar-
tificial Intelligence, image processing, and

computer vision.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

	Introduction
	Related Work
	Research Methodology
	Data Acqusition
	Data Pre-processing
	Feature Extraction
	HOG
	LBP
	SIFT

	Training Data
	Pseudocode of Action Recognition
	Training Data using MPI4Py
	Training Data using Joblib

	System evaluation

	Results and Discussion
	Hardware and Software Specifications
	The Effect of Threshold in Cascade Classification
	The effect of parameters on supervised learning
	The Effect of Dataset Number on Accuracy Results
	The Effect of Parallel Processing on Training Stage
	Discussion

	Conclusion
	References
	Biographies
	Suprapto 
	Wahyono
	Nur Rokhman
	Faisal Dharma Adhinata


