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Abstract: This paper introduces an efficient method for 3D instance segmentation based on 2D object detection, applied to the
photogrammetric survey images of archaeological sites. The method capitalizes on the relationship between the 3D model and the set
of 2D images utilized to compute it. 2D detections on the images are projected and transformed into a 3D instance segmentation,
thus identifying unique objects within the scene. The primary contribution of this work is the development of a semi-automatic
image annotation method, augmented by an object tracking technique that leverages the temporal continuity of image sequences.
Additionally, a novel ad-hoc evaluation process has been integrated into the conventional annotation-training-testing cycle to determine
the necessity of additional annotations. This process tests the consistency of the 3D objects yielded by the 2D detection. The efficacy
of the proposed method has been validated on the underwater site of Xlendi in Malta, resulting in complete and accurate 3D instance
segmentation. Compared to traditional methods, the object tracking approach adopted has facilitated a 90% reduction in the need for
manual annotations, The approach streamlines precise 3D detection, establishing a robust foundation for comprehensive 3D instance
segmentation. This enhancement enriches the 3D survey, providing profound insights and facilitating seamless exploration of the Xlendi
site from an archaeological perspective.

Keywords: Underwater archaeology, AI, Convolutional Neural Network (CNN), 3D Instance Segmentation, and Underwater photogam-
metry.

1. Introduction
The approach developed in this article has been experi-

mented with during the deep-sea archaeological excavation
of Xlendi in Malta, led by Prof. Timmy Gambin. The
initial photogrammetric surveys date back to 2009, and a
collaboration between two laboratories from Aix-Marseille
University—the LIS (Laboratory of Computer Science and
Systems) and the CCJ (Centre Camille Julian)—along with
the University of Malta, has facilitated annual excavation
and photogrammetric survey campaigns over a three-year
period [1]. The excavations and 3D surveys documenting
the evolution of the excavation site continued until 2022,
under the direction of the University of Malta. A view of the
surface layer, composed of amphorae and a grinding stone
obtained through photogrammetry in 2014, is illustrated in
Figure 1.

In this paper, we utilize a 2D-to-3D link to transfer 2D
object information — specifically amphorae in our case,
as shown in Figure 2 — from the given dataset. Fur-
thermore, given that we have a complete 3D model of
the site obtained through photogrammetry, we establish a

Figure 1. Orthomosaic image, generated by photogrammetry on the
Xlendi wreck, showing amphorae and grinding stone laying on the
sediment.

link between the detected objects in the images and their
instance segmentation in the 3D model. This link is a 2D-
to-3D correspondence that allows for the integration of
information across these dimensions.

A traditional object detection approach, based purely on

E-mail address: muad.rashed@aliraqia.edu.iq, pierre.drap@lis-lab.fr https:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/150194
https://journals.uob.edu.bh


1334 Maad kamal Al-anni, et al.: 3D Instance Segmentation for Archological Site.

Figure 2. Example images for the underwater site showing artifacts
(amphorae) in 2D, that need to be detected automatically.

color or spatial information, may fail, as stated by [1]. Re-
cent advances in machine learning, and more specifically in
deep learning, have led to robust end-to-end object detection
methods. By leveraging a bidirectional 2D-to-3D link and
employing multitask learning, 3D instance segmentation can
be accomplished using a 2D object detection approach; or
at least, a close part of the 3D model can be identified. This
is achieved by incorporating instance segmentation into 2D
object detection.
To build a robust model, it is necessary to label the entire
dataset and prepare it for the training phase. Given the
size of the dataset, which comprises over 30,000 images
from surveys conducted over the past 10 years, manually
labeling the entire dataset poses a significant challenge. To
address this, we adopt a new approach that mitigates this
issue by using an ad-hoc evaluation process, which can be
implemented if further annotations are needed. Ultimately,
the need for manual labeling of the entire dataset is reduced
by 90% compared with traditional techniques, thanks to
object tracking.
The Metashape software has been utilized for photogram-
metric calculations since 2009. Specific scripts are devel-
oped in Python to manage the projections of 2D labeled
instances to obtain a probability area of amphorae presence
in 3D space. This allows for the precise identification of
labels found on photos with the 3D instances of amphorae.
The result is a 3D model that focuses on the visible part
of an amphora or a fragment thereof, including a small
part of the sediment and a visible portion of the amphora.
Future work will lead us to develop proposals regarding the
determination of the typology of isolated amphorae.
In simple terms, this research leverages the 2D object
detection method (YOLOV4) in two key stages to achieve
Efficient 3D instance segmentation improves archaeological
site exploration comprehensively. First, we employ an initial
training phase to minimize human intervention in labeling
the entire dataset. This is achieved through the use of a
semi-automatic image annotation method combined with
a novel ad-hoc evaluation process. Subsequently, once the
dataset is labeled, we proceed with the final training phase
to obtain a robust model, which serves as the input to the
second stage. In the second stage, we address this challenge
by adapting YOLOV4 to the 2D/3D linkage facilitated by
photogrammetry. For both implementations, we rely on
open-source software, one for labeling purposes and another
for 3D instance segmentation using YOLOV4.
The structure of this paper is as follows: Firstly, we in-

troduce the problem in the context of archaeological sites
and highlight our main contributions. Next, we review
related work and explain how our approach differs from
others. The subsequent section outlines our methodology,
which involves a semi-automatic image annotation method
combined with object tracking, utilizing the YOLOV4
model as our reference. Following this, we describe the
process of 3D reconstruction from 2D images, bridging the
gap between 2D object detection and 3D projection using
photogrammetry. Finally, we engage in a general discussion
about the final implementation, its benefits, and potential
avenues for future work.

2. RelatedWorks
Although 3D instance segmentation methods have seen

notable advancements, as shown by previous research
[2][3][4], these approaches have been limited to a few
models. In other words, the detection and classification of
3D objects is only relevant, reliable, and usable in a truly
experimental context when the training of object detection
methods is done in 2D. This is similar to the problem at
the heart of this work where, fortunately, 2D and 3D data
are intimately linked and the 2D data are very abundant.
Takmaz et al.[5] introduced OpenMask3D, a zero-shot
approach for open-vocabulary 3D instance segmentation.
Their approach addresses the limitations of existing meth-
ods and enables segmentation of object instances based on
free-form queries. The experimental results demonstrated
its superior performance compared to other approaches.
Rozenberszki et al.[6] proposed UnScene3D, an unsuper-
vised approach for class-agnostic 3D instance segmentation.
The method generates pseudo masks using self-supervised
features and refines them through self-training. The method
outperforms existing approaches by over 300% in terms of
average precision, even in challenging scenes.
Kontogianni et al.[7] proposed an interactive approach for
3D instance segmentation, allowing users to collabora-
tively segment objects in 3D point clouds. Unlike fully
supervised methods, this approach does not require costly
training labels and adapts to new environments. Users can
directly interact with 3D point clouds, clicking on objects
of interest to achieve accurate segmentation with minimal
effort. This method opens up possibilities for applications in
Augmented Reality (AR)/Virtual Reality (VR) and human
robot interaction, facilitating efficient labeling of diverse 3D
datasets.
Chibane et al.[8] presented a weakly supervised approach
for 3D semantic instance segmentation using bounding
box labels. The method, called Box2Mask, incorporates
a deep model based on Hough voting and a specialized
clustering method. It achieves competitive performance
on the ScanNet test dataset and demonstrates successful
instance segmentation on the ARKitScenes dataset using
only bounding box annotations.
A fully-convolutional 3D point cloud instance segmentation
method avoids clustering and its associated challenges [9]. It
utilizes per-point prediction and optimal transport for target
assignment, achieving promising results on the ScanNet and
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S3DIS benchmarks. The method removes inter-task depen-
dencies and provides a simple and accurate 3D instance
segmentation framework.
Zhong et al.[10] addressed the challenging task of 3D
instance segmentation by proposing a novel framework. The
approach involves learning offset vectors for points and
grouping them using a hierarchical point grouping algo-
rithm. Multiscale groups were used for instance prediction,
and MaskScoreNet was employed to refine the segmentation
results. Experimental results on the ScanNetV2 and S3DIS
benchmarks demonstrated the model’s performance, achiev-
ing a 66.4% mAP with a 0.5 IoU threshold on ScanNetV2,
outperforming the state-of-the-art method by 1.9%.
Shen and Stamos[11] proposed a novel object segmentation
and detection system that utilizes 2D detection to generate
frustums, followed by a 3D convolutional-based method,
Frustum VoxNet, for 3D instance segmentation and object
detection. The system achieves fast 3D inference with RGB-
D images and comparable accuracy with depth-only images,
making it suitable for low-light conditions or RGB-absent
sensors. The inclusion of segmentation in the pipeline
improves detection accuracy while providing 3D instance
segmentation.
Shao et al.[12] presented an RGB-D based instance-level
segmentation method that provides detailed information
about object location, geometry, and quantity, which are cru-
cial for safe decision-making in real-world environments.
The model uses object occupancy moments to represent
instances and an hourglass DNN for 3D position, size, and
pose voting. Clustering and object-centric training achieve
superior performance compared to the state-of-the-art on
both synthetic and real-world datasets.
All approaches face challenges with large-scale 3D datasets,
such as occlusions, noise, and varied object shapes and
sizes, making annotating 3D data for training laborious.
Additionally, 3D instance segmentation techniques may
struggle with objects having complex boundaries, leading
to less accurate results. Our method tackles these issues
with semi-automatic image annotation and a unique eval-
uation process. Leveraging the bidirectional link between
2D and 3D via photogrammetry, we isolate point clouds
of interest like amphorae from a 2D perspective. This
innovative approach streamlines 3D instance segmentation
while reducing labeling effort by 90%.

3. Methodology
A. Object Detection Approaches

Object detection has emerged as one of the most
complex fields in computer vision, undergoing significant
advancements over the past decade. In essence, this
technique initially aims to: 1) identify the spatial
location of objects within an image, known as object
localization, and 2) assign them to specific categories,
known as object classification. Algorithms vary in
efficiency and scalability. Examples include Region-Based
Convolutional Neural Networks (R-CNN)[13], Fast R-
CNN[14], Faster R-CNN[15], Histograms of Oriented
Gradients (HOG)[16], the Region-based Convolutional

Network method (R-CNN)[13] again listed here, Region-
based Fully Convolutional Networks (R-FCN)[17], Single
Shot Detector (SSD)[18], Spatial Pyramid Pooling (SPP-
net)[19], and You Only Look Once (YOLO)[20].
In the context of 3D surveys made from 2D images, the
YOLO approach (fully 2D) is considered advantageous due
to its real-time processing speed. This makes it suitable for
end-to-end applications that require rapid object detection.
YOLOV4 divides the output space of bounding boxes into a
grid of default boxes with different aspect ratios and scales
per feature map location. When making predictions, the
network assigns scores to each object category within each
default box and refines the box to better match the object’s
shape. Furthermore, the network combines predictions
from multiple feature maps at different resolutions to
effectively handle objects of various sizes. The YOLOV4
architecture is illustrated in Figure 3.

Figure 3. DarkNet Network of YOLOV4 Architecture.

Given that the complete detection process is incorporate
within one network, it is capable of undergoing
comprehensive optimization based on detection
performance, YOLOV4 detection network has 24
convolutional layers, followed by 2 fully connected
layers. Alternating convolutional layers reduce the feature
space from preceding layers. This approach has undergone
several improvements since its inception. For instance,
recent versions have become considerably more accurate
and many times quicker than the original.

B. Semi-Automatic Image Annotation Coupled with Object
Tracking Method
The main challenge we encounter is managing a vast

dataset consisting of more than 30,000 images covering
surveys conducted over an extensive period, figure 4
illustrates the heuristic approach we employed to manage
human intervention efforts for annotating this extensive
dataset. To address this, we utilise a semi-automatic
image annotation approach that leverages object tracking.
Although a significant number of images still require
manual labelling, the sequential nature of the application
reduces the overall manual labelling workload significantly.
Our approach performs similarity measure between
consecutive images and selects one image per group of
similar images. Only selected images are required to be
labelled by extending an open source software. Then, an
initial training phase is performed using this subset of
images, menu buttons for detection and tracking as shown
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in Figure 5.

Figure 4. demonstrate the reduction of human intervention efforts
by employing 2D object detection (YOLOV4) to handle the entire
dataset of 30k images. This is achieved through a semi-automatic
image annotation method coupled with a novel ad-hoc evaluation
process, resulting in the acquisition of a robust final model.

Figure 5. semi-automatic image annotation coupled with object
tracking method.

The obtained model is used to automatically detect
amphorae in the remaining unlabelled images, the detection
process is refined using the results of a sparse feature point
matching approach applied to an ad hoc evaluation process
to labelled and unlabelled images within each labelled
and unlabelled group if any. A second training phase is
performed using all images to obtain the final robust model
as shown in Figure 6.

The model utilizes LabelImg1, an open-source graphical
image annotation tool. This tool is indispensable for
drawing bounding boxes around amphorae in 2D images
and adding corresponding labels. LabelImg, compatible
with both PyQt4 and PyQt5, facilitates a semi-automatic
image annotation approach. Additionally, its adaptability
extends to various formats. Notably, DarkNet2 is aligned
with the YOLOV4 format, optimizing it for datasets in our
proposed model and related object detection tasks. Given
its convenience and user-friendly interface, LabelImg is
highly regarded in the deep learning community.

Figure 6. The accuracy and loss function graphs depict the per-
formance of the finalized robust model, achieved by setting the
maximum batches parameter to 2000 multiplied by the number of
classes and IOU threshold = 0.5.

C. Link with Photogrammetry
Photogrammetry is widely recognized as the simplest

and most effective method for conducting a 3D survey
in an underwater environment. Requiring only a brief
period for fieldwork, which is particularly advantageous
in underwater contexts, this technique proves to be
extremely beneficial, especially under the challenging
conditions found underwater. Indeed, visibility underwater
is severely limited, necessitating that photographs be
taken in close proximity to the subject to minimize the
water column between the object and the camera lens.
This requirement leads to a proliferation of photographs
and their enlargement. On the one hand, these factors
complicate the photogrammetry process by increasing the
number of images; on the other hand, they amplify the
utility of the 2D documents, which we are already adept
at exploiting. Moreover, we can exploit the sequential
shooting mode, capturing images along a trajectory at
regular intervals, a condition that is conducive to employing
tracking techniques.
Consequently, we are able to develop a 2D-focused
approach for the thousands of photographs and integrate
these methods with the 3D model generated through

1https://github.com/HumanSignal/labelImg
2https://github.com/AlexeyAB
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photogrammetry.
Photogrammetry computations are performed using the
Metashape software3, which provides the position of
each photograph as well as a sparse 3D point cloud
that encompasses the scene. These points, essential for
calculating the pose of each photograph, are not intended
to finely detail the scene. Nevertheless, each point is
associated with the various photographs in which it has
been detected.
As is now evident, the detection of artifacts in images
by automated approaches, as proposed by well-known
software suites like YOLOV4, can be projected into the 3D
space delineated by photogrammetry. While a robust and
effective method like YOLOV4 may not operate directly
in 3D, we can still implement this type of approach by
utilizing the 2D/3D linkage provided by photogrammetry.

D. Toward 3D Instance Segmentation Using YOLOV4
We use the bidirectional relationship between 3D

and 2D reconstruction, which is at the core of the
photogrammetry process, to link the 3D model with the
2D recognition approach For further illustration, please
refer to the Figure 7.

Figure 7. illustrate the application of a 2D-3D bidirectional link to
operate a 2D object Detection Model, aiming to achieve 3D instance
Segmentation using YOLOV4. This is done through projection with
an extension of photogrammetry.

Contrary to 2D instance segmentation, 3D instance
segmentation provides a more intuitive and informationally

3https://www.agisoft.com/

rich perspective. In a 2D image, the projections of 3D
objects can overlap, complicating the differentiation
of objects. In contrast, 3D space naturally separates
different objects, offering clearer demarcation, yet object
detection in 2D has proven to be robust and effective.
On this basis, we introduce a specialized 2D-to-3D
instance segmentation technique that leverages 2D object
detection, specifically designed for the unique context of
3D archaeological scenes. Our approach enables precise
3D detection and establishes a solid foundation for 3D
instance segmentation, which has enriched the 3D survey
by providing comprehensive insights and a seamless
exploration of the Xlendi site from an archaeological
perspective.
The Metashape software serves to define spatial properties
and utilizes a sparse 3D point cloud for the comprehensive
representation and manipulation of objects within the scene.
It is instrumental in determining the 3D scene’s position
and orientation based on a foundational 3D point cloud.
These points, crucial for calculating photo orientations,
may lack intricate scene details but are connected to the
specific 2D photographs where the measurements were
taken.
It is noteworthy that robust 2D object detection approaches
like 2D object detection(YOLOV4) are not inherently
designed for 3D applications. However, in our methodology,
we bridge this gap by adapting YOLOV4 to the 2D/3D
linkage provided by photogrammetry. In the context
of the archaeological site Xlendi, our model identifies
the intersections of the 3D tie-point cloud projections
using this linkage, assigning them a valid status. This
methodology diverges from conventional 3D instance
segmentation methods that rely on voting and grouping
of 3D orthocoordinates based on a clustering paradigm,
which proves to be less effective for large and irregularly
shaped objects.[21] [22] [23].
By contrast, our approach does not depend on any hand-
tuned, distance-based clustering. Instead, all instances
in the scene are simultaneously represented as Bounded
Boxes (amphorae) with lower-left and upper-right 2D
coordinates,
Point clipping in 2D involves determining whether a point
lies within a specified BB or not, as shown in Figure 8
and Figure 9.
Let’s consider a simple BB as an example. The rectangular
region of BB is defined by its minimum and maximum
coordinates (xmin, ymin) and (xmax, ymax). A 2D point
(x, y) is cropped if it satisfies the following conditions:
xmin ≤ x ≤ xmax
ymin ≤ y ≤ ymax
If these conditions are met, the 2D point lies within the
BB and is visible; otherwise, it is outside BB and needs to
be invisible.
The cropped boxes mentioned are generated from a
2D trained model, previously identified as a robust
model. Subsequently, our approach selects only the 3D
maps of identified id objects to identify intersections
among 3D tracking correspondences. This is achieved by
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utilizing the 2D-3D bidirectional link, which is further
extended by photogrammetry, as illustrated in Algorithm 1.

Algorithm 1: 3D Point visibility Algorithm
Data: List of all Point cloud P(Px, Py, Pz, Ptrack id),

containing the points of the reference object
reduce id ob j 3D

Result: Disable all points except points in detected
object point array

for each point pts in P do
if not ptstrack id in reduce id ob j 3D then

do pts.valid = False
Data: copy a new chunk and save to a new project

Figure 8. bounded box (amphora) with lower-left and upper-right
2D coordinates

The high confidence levels across the entire extent
of instances lead to correct predictions. Different from

modern approaches that predominantly rely on geometric
clustering techniques [24] [25], our proposed approach
does not require 3D-specific components, such as centre
voting or manually tuned distance-based clustering.

Figure 9. Result for camera reference = 68 (a) shows the bounded
boxes for 4 amphorae in 2D with different coloured demarcations,
(b) 3D tie-point plotting for four boxes.

on the basis of the success of recent intersection
bounded-box detection and 3D id-objects accumulation
through bounded-box voting and grouping with the
utilisation of 2D-to-3D bidirectional links, our overall
3D instance segmentation using 2D object detection
yields promising results across a various of challenging
archaeological sites and heritage documentation tasks,
exploring an ancient shipwreck off Xlendi Bay, Gozo, is
now publicly available on the Google Play Store app.
For optimal processing of large sparse point clouds in
3D instance segmentation and their bidirectional links,
we utilised the Metashape Python API. Our hardware
setup includes a CPU with SSE 4.2 support, a high-end
NVIDIA GPU, a recommended 16 GB RAM, and an
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SSD for enhanced processing speed. On the software
side, we ensure compatibility with Windows 10 and use
Python version 3.8. Meeting these specifications guarantees
efficient script performance and smooth API integration.
For instance, Camera Reference 66 which contains four
amphorae with an id objects’ map of 590, requires roughly
47 s to processes. Figure 10 illustrates the relationship
between the size of the id objects’ map and the associated
processing time for each camera reference. Significantly,
processing duration is largely dependent on the specific
processors and graphics card in use.

Figure 10. Relationship between the volume of id objects’ map and
time(s) for given camera references.

A pivotal step is the amphorae segmentation within the
observed scene, especially when preserving the id objects’
map for every camera reference in the scanned 3D project
via the software. Subsequently, certain points are toggled
to ”false” validation, whereas others within the id objects’
map maintain their original validation status. This sets the
stage for the project’s concluding phase.
After adjusting the tie-point cloud, the subsequent phase
entails analyzing overlapping images, pulling millions
of points to craft a comprehensive 3D depiction of the
observed scene. This cloud, capturing intricate geometries,
lays the groundwork for mesh formation. The meshing
stage transitions these points into a seamless 3D amphora
model, encompassing validated vertices, edges, and faces,
delineating segmentation structures. after mesh formation,
texturing commences[26], primary images overlay this
mesh, mapping intricate colors and patterns from the
photos onto the 3D amphora facade. The outcome is a
lifelike 3D model, reflecting precise geometry and visual
veracity.
Upon refining the tie-point cloud, the process progresses to
meshing and texturing by evaluating overlapping imagery.
This final stage harnesses vast data points, generating a
comprehensive 3D representation of the surveyed scene.

The detailed point cloud lays the groundwork for the
creation of the mesh. Meshing then transforms these
aggregated points into a seamless 3D amphora structure,
characterized by vertices, edges, and faces, providing
a sophisticated segmentation blueprint. Following the
creation of the mesh, attention shifts to texturing. In
this phase, original images are superimposed onto the
mesh, transferring intricate colors and patterns onto the
3D amphora surface. The end result is a photorealistic
3D model, notable for its geometric precision and visual
fidelity [27][28].

4. Upcoming Investigations
The progress in 3D instance segmentation using

photogrammetry significantly enhances the surveying and
digitization of the Xlendi site, offering valuable insights for
archaeologists. Despite advancements in automation, data
acquisition, and processing speeds, deep-sea archaeological
sites pose challenges like extreme pressure, limited
visibility, and artifact preservation. Specialized equipment
and methods are crucial for exploration, making research
and recovery complex. Ongoing research focuses on
semantic segmentation in underwater environments and
temporal monitoring. Despite these challenges, acquiring
digital models for dissemination has become more
accessible, especially for those proficient in photography
and basic surveying principles.
The significance of Virtual Reality (VR) in archaeology
and cultural heritage spans over three decades, with
VR techniques evolving to offer immersive experiences
within archaeological sites. These advancements not only
reproduce the present state of heritage but also enable the
simulation of the past, a concept termed cyberarchaeology.
Various projects exploring the application of Virtual and
Augmented Reality in underwater locations aim to facilitate
virtual exploration for non-divers, raise awareness, and
advocate for Underwater Cultural Heritage (UCH) through
educational games. Additionally, these technologies support
in-depth examination, analysis of complex excavations,
and monitoring their development over time[29] [30] [31]
[32] [33] [34].
The proposed 3D model, relying on 3D instance
segmentation, is designed to consist of two distinct
backend components and a unified frontend. Device
sensors facilitate localization and mapping, enabling
seamless integration. The first backend integrates ontology
and the Metashape API for the Xlendi archaeological
study, utilizing photos collected since 2004. The second
backend visualizes site geometry by segmenting amphorae
in VR/AR.
In addition to offering a comprehensive view of the 3D
model, it provides a non-invasive technique, allowing
us to visualize various stratigraphic structures and the
relationships between different stratigraphic units (US).
It localizes the object of interest based on the user’s
movements and adjusts the point of view of the device
within the 3D model. The pilot sample demonstrates its
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effectiveness and efficiency, particularly when intuitively
examining the 3D tie-point cloud. Ongoing research
aims to validate its performance for the 3D dense cloud,
including mesh and texture, Future work will lead us
to develop proposals regarding the determination of the
typology of isolated amphorae, and Future improvements
could potentially enhance run-time efficiency in 3D scene,
especially when employing recent version of YOLO on 2D
images, with or without an enhanced labelling process.

5. Conclusion
In this paper, we introduce a novel, precise, and

efficient algorithm for optimally processing large sparse
point clouds in 3D instance segmentation, including their
bidirectional links. We develope a 2D-based 3D detection
system using a 2D object detection approach. Although
YOLO V4, as implemented by DarkNet, solely performs
detection, our implementation observations reveal the
recent advent of YOLO V8 panoptic, which performs
both segmentation and detection on 2D images, offering
enhanced accuracy. Through the integration of 2D object
detection using YOLO V4 for 3D instance segmentation,
we gain a comprehensive understanding of 3D scenes,
encompassing sparse and dense points.
Our detection success is showcased by achieving 85-87%
performance, based on ad hoc labelling technique and
2D object detection by YOLO V4, decreasing labelling
effort by up to 90%. Our model validates its hypothesis
of leveraging a bidirectional 2D-to-3D link and employing
2D-to-3D segmentation based on 2D object detection
approach by incorporating an instance segmentation and
an object detection with reasonable accuracy, it provides
comprehensive insights and a smooth exploration of the
Xlendi site from the perspective of archaeologists.
Future improvements could potentially enhance run-time
efficiency in 3D scene, especially when employing recent
version of YOLO on 2D images, with or without an
enhanced labelling process. The use of labelled datasets in
supervised neural networks significantly affects the overall
performance. Furthermore, our capability to enhance
the accuracy rate directly results in a reduction of false
positives and false negatives, thereby improving the feature
extraction of target objects.
Our flexibly designed labelling process can operate in
data-centric AI with the image labeling tool in High
Resolution (HR) and Low-Level Radiometry (LLR) for
smart cropping techniques. It is also expand the volume
of a trained dataset, the use of a semi-automatic image
annotation coupled with object tracking method and an
ad hoc evaluation process are applicable. We foresee
the application of our techniques in real-time robotics
applications. One potential direction for future research is
the incorporation of our system into a robotic platform.
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[32] F. Liarokapis, P. Kouřil, P. Agrafiotis, S. Demesticha, J. Chmelı́k,
and D. Skarlatos, “3d modelling and mapping for virtual exploration
of underwater archaeology assets,” ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. XLII-2/W3, pp. 425–431, 02 2017.

[33] M. Cozza, S. Isabella, P. Di Cuia, A. Cozza, R. Peluso, V. Cosentino,
L. Barbieri, M. Muzzupappa, and F. Bruno, “Dive in the past: A
serious game to promote the underwater cultural heritage of the
mediterranean sea,” Heritage, vol. 4, no. 4, pp. 4001–4016, 2021.
[Online]. Available: https://www.mdpi.com/2571-9408/4/4/220

[34] M. Nawaf, P. Drap, M. Ben-Ellefi, E. Nocerino, B. Chemisky,
T. Chassaing, A. Colpani, V. Noumossie, K. Hyttinen, J. Wood,
T. Gambin, and J. C. Sourisseau, “Using virtual or augmented reality
for the time-based study of complex underwater archaeological
excavations,” ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. VIII-M-1-2021, pp.
117–124, 2021. [Online]. Available: https://isprs-annals.copernicus.
org/articles/VIII-M-1-2021/117/2021/

Assist.Prof.Dr Maad Kamal Al-anni Dr.
Maad Kamal Al-anni currently serves as a
faculty member in the College of Engineer-
ing, Department of Computer Engineering,
Al-Iraqia University. He is also involved
with the World University Ranking as a
mentor at Al-Iraqia University (AIU) and is
the founder of the Research Center called
Dynamic Casual Model and Brain Study
Center at AIU, Ministry of Higher Education

and Scientific Research, Iraq. He obtained his Ph.D. degree
through an Indian Council for Cultural Relations (ICCR) scholar-
ship at the University of Pune, India, from February 2005 to April
2010. Prior to this, he received a Master’s degree in Computer
Science from the University of Baghdad, Iraq, in October 2003,
and a Bachelor’s degree in Computer Science from Iraq in October
2001.

https:// journals.uob.edu.bh

https://www.sciencedirect.com/science/article/pii/S0925231222003915
https://www.sciencedirect.com/science/article/pii/S0925231222003915
https://www.mdpi.com/2571-9408/4/4/220
https://isprs-annals.copernicus.org/articles/VIII-M-1-2021/117/2021/
https://isprs-annals.copernicus.org/articles/VIII-M-1-2021/117/2021/
https://journals.uob.edu.bh


1342 Maad kamal Al-anni, et al.: 3D Instance Segmentation for Archological Site.

Pierre DRAP, Professor (Researcher)
Dr.Pierre Drap is affiliated with Aix-
Marseille University, CNRS, ENSAM, and
the University of Toulon, working at LIS
UMR 7020 in Marseille, France. With exten-
sive expertise in his field, Drap’s research fo-
cuses on various aspects of computer science
and engineering. He has contributed signif-
icantly to the advancement of knowledge in
areas such as artificial intelligence, robotics,

and 3D Survey. Drap’s work has been published in reputable
journals and presented at international conferences. As a dedicated
researcher and educator, he is committed to mentoring students and
collaborating with colleagues to address complex challenges.

https:// journals.uob.edu.bh

https://journals.uob.edu.bh

	Introduction
	Related Works
	Methodology
	Object Detection Approaches
	Semi-Automatic Image Annotation Coupled with Object Tracking Method
	Link with Photogrammetry
	Toward 3D Instance Segmentation Using YOLOV4

	Upcoming Investigations
	Conclusion
	References
	Biographies
	Assist.Prof.Dr Maad Kamal Al-anni 
	Pierre DRAP, Professor (Researcher)
	


