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Abstract: The unpredictability of data growth necessitates data management to make optimum use of storage capacity. An innovative
strategy for data deduplication is suggested in this study. The file is split into blocks of a predefined size by the predefined-size
DeDuplication algorithm. The primary problem with this strategy is that the preceding sections will be relocated from their original
placements if additional sections are inserted into the forefront or center of a file. As a result, the generated chunks will have a new hash
value, resulting in a lower DeDuplication ratio. To overcome this drawback, this study suggests multiple characters as content-defined
chunking breakpoints, which mostly depend on file internal representation and have variable chunk sizes. The experimental result
shows significant improvement in the redundancy removal ratio of the Linux dataset. So, a comparison is made between the proposed
fixed and dynamic deduplication stating that dynamic chunking has less average chunk size and can gain a much higher deduplication ratio.
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1. INTRODUCTION
The economic industry in the twenty-first century relies

heavily on data, a trend known as the information age. To be
useful, how much data must be processed? According to a
study done by IDC, only 0.5 percent of globally generated
data is evaluated [1],[2]. Global Datasphere, according to
the International Data Corporation (IDC Report, 2020), is
the collection of data generated, acquired, or replicated via
digital material from around the world. According to IDC,
the Global Datasphere will rise from 33 Zettabytes (ZB)
in 2018 to 175 ZB by 2025[3],[4]. Data deduplication is
therefore referred to as a method for avoiding storing and
transmitting redundant data over the internet that is both
space and bandwidth-efficient. It is one of the best strategies
for resolving this problem [5],[6].

Deduplication is an effective storage-saving method used
in enterprise backup setups. The same data block might
be saved numerous times on a file system across various
files. Data is only stored once, enabling the use of the same
distinct data across all files that employ the same portion.
The most widely used technique partitions file data into
pieces and creates a distinct cryptographic fingerprint for
each piece. If the fingerprint has previously been saved, a
chunk is classified as redundant; otherwise, it is regarded
as unique [7]. The division of the input file into different
segments is the most basic aspect of data deduplication.
Fixed-size (FSC) and variable-size (CDC) chunking are the
two most prevalent algorithms for chunking data [8],[9].

The simplest and quickest chunking method is fixed-
size. Although most of the data in the file are unaffected,
the boundary shifting issue reduces the effectiveness of
deduplication; FSC may provide various outcomes (i.e.,
various hash) for all subsequent chunks. All existing chunk
boundaries indicated by FSC are altered if a single byte
is inserted at the beginning of a data input stream, and
duplicate chunks are not found and eliminated [1]. Content-
Defined Chunking (CDC), another name for variable-length
chunking, is a recommended method for resolving the
boundary shifting issue [11], in which, unlike fixed-size
chunking, chunk boundaries are determined by the infor-
mation of the data stream in bytes. Consequentially, when
data is modified, the majority of the chunks stay unaf-
fected, allowing for the detection of additional redundancy
for deduplication [12], [13]. According to several recent
studies, around (10–20)% more duplication can be detected
by CDC methods than by FSC[14],[15].
Deduplication is a vital step in the data preprocessing phase
of data mining that helps integrate data from many sources.
The redundant and/or inconsistent data for text/data mining
applications, might distort data distribution and result in
an imbalance. Developing a system that can predict two
records having the same content despite multiple data
inconsistencies is an important issue faced by this work
[16].

The deduplication technology locates and removes du-
plicated data blocks using a hash function. Hashing al-
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gorithms are used in data deduplication solutions to de-
tect discrete ”chunks” of data. There are two widely em-
ployed procedures: SHA-1 and MD5. When an algorithm
for hashing analyses data, it creates a hash that serves
as a representation of the information and uses various
comparison techniques to identify redundancies. The same
hash is produced each time the same data is sent through
the hashing process multiple times. On the other hand,
deduplication has a lengthy runtime and requires more
processing power [17].

This article describes a deduplication method that breaks
the byte stream into parts in an attempt to discover differ-
entiating signatures that can be used across chunks. The
suggested deduplication system is implemented with the
following contributions to the paper:
1. A chunking approach is suggested as a multiple-character
fingerprint. Identifying the most redundant cut point is used
to improve and streamline the chunking strategy without
hash assessment.
2. The suggested hashing function combined three hashes
computed using different keys each time into one final
hash to lower the possibility of a hash collision during the
matching stage. These simple hashes require less storage
space.
3. The effectiveness of the suggested strategy is explained
by comparing the proposed dynamic and fixed chunking.

The proposed system is considered throughout the orig-
inal paper. Section 2 describes several data deduplication-
related works. The proposed system structure is defined
in Section 3. The findings of the suggested technique
are addressed in Section 4. The final section offers some
observations as well as some suggestions for further study.

2. RELATED WORK
Duplicate data causes many problems with search and

security, taking up more space and lengthening access times.
Such issues can be effectively solved through data mining.
Deduplication development studies have been conducted
by researchers from a wide range of perspectives, mostly
focused on data partitioning (extraction of features) method-
ologies and the formation of chunk signatures.

KRISHNAPRASAD, et al (2013) [18] introduced a
strategy termed ”Dual Side Fixed Size Chunking”, by
creating a hash from both the start and the end of the file
and saving both values to a metadata table. The suggested
approach successfully addresses the fundamental drawback
of fixed chunking, namely the boundary shifting issue,
without the need for expensive calculations for variable-
size chunking, or content-defined chunking. This approach
can be used to create a better DeDuplication ratio for video
or audio files. However, this algorithm required more data
storage to store chunks from frontend and backward files.
To tackle the boundary shift problem of fixed chunking,
CDC was developed by LU, et al (2018) [19]. The use
of CDC for network block storage deduplication has two
challenges, though. One challenge is establishing a mapping

mechanism between a deduplicated chunk’s stream offsets
and its block address; another is designing an efficient index
structure to handle the metadata of data chunks. This study
designed two structures B+ trees and hash tables to solve
the mapping problem and provide two backends to store
metadata on network block storage devices. to accelerate
disk searches by lowering the volume of the hash table
and the lookup range. The proposed systems are evaluated
concerning actual workloads. The experimental findings
demonstrated the high search performance of the suggested
schemes at a reasonable cost in terms of spatial sacrifice.

By deciding on the best chunking combination, fin-
gerprinting, and hash table techniques, YOON (2019)[20]
introduced the implementation methodology for packet-
level deduplication. The results showed that performance
is enhanced three times over the existing approach and that
variable-size chunking greatly decreased redundancy than
fixed-size chunking, even though fixed-size chunking was
faster. XU, et al. (2019)[21] proposed LIPA, a learning-
based data deduplication system that uses the reinforcement
learning paradigm to create a flexible indexing structure. To
address the lookup disk bottleneck issue, it is different from
past inline chunk-based deduplication algorithms for large-
scale backup. In earlier techniques, chunk identification
needed either a full chunk index or a sampling chunk
index. The sampled chunk index has a direct impact on the
deduplication ratio, which is correlated with the sampling
ratio, and the entire chunk index uses a lot of RAM.
The suggested learning-based strategy offers a deduplication
ratio that is on par with or better than preceding techniques
while consuming very little memory to keep the index.

YE, et al. (2021)[22] suggested CARD, a novel chunk-
context-aware similarity detection technique that used an
N-sub-chunk shingles-based initial feature extraction strat-
egy and a BP-Neural network-based chunk-context aware
model. It efficiently linked the underlying structure of each
data chunk’s content with context information for feature
extraction, small modifications in data chunks have a much
lower impact. When compared to state-of-the-art likeness
detection algorithms, the results demonstrated that CARD
can discover up to 75.03 percent more duplicated data and
accelerate resemblance detection procedures by 5.6 to 17.8
times.

The main goal of Data Deduplication was to optimize
redundancy through analysis and updating of the current
content dynamic chunking parameters via the introduction
of a Novel-Hash function by Madan, S. (2022)[23], which
will further enable effective chunk breakpoint recognition
and dataset fingerprinting. In addition, the multithreading of
content-defined chunking algorithm will be produced in this
study work to improve the computing process by utilizing
the multiprocessor technique. The proposed algorithm was
based on the idea of a shifting window since if there is no
match with the hash value pool, it slips one byte at a time.
The research was comparing the average processing time for
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TABLE I. The Proposed Method and Previous Work Comparison

Research Advantage Disadvantages The proposed method

KRISHNAPRASAD, et al
(2013) [18]

It solves the boundary-shifting
issue and gains better DR

More data storage was needed
for the algorithm to save
chunks from the frontend and
backend files

Solve the boundary shift prob-
lem with better DR without
needing for double rolling file
with less storage size

LU, et al (2018)[19] It provides high search perfor-
mance.

Designed two structures of B+
trees and hash tables to solve
the mapping problem

Used one structure index table
only to store hash value

YE, et al. (2021) [22] Uses chunk-context aware
model to detect duplications.

Used BP-Neural network for
feature extraction which is
time-consuming.

It uses simple DCA calculation
and does not depend on ML al-
gorithms for detecting internal
representation.

Liu X, et al (2023)[24] Uses active learning to solve
deduplication issues.

Small datasets, not large data,
are used in the study, and
the deduplication ratio for each
dataset is not evaluated

The proposed method calcu-
lates the size of the large
dataset both before and after
the redundant data is removed,
as well as the deduplication ra-
tio.

Guo S. (2023) [26] It uses DSW and Markov pre-
diction to find cut points and
novel DR on Ocean datasets.

It was needed to resolve the
DSW optimization operation
when dealing with normal data.
Furthermore, the largest dataset
weighed in at under 2 GB.
Only one technology was used
for the experiments.

The suggested approach was
tested on a second device that
has other specifications with a
dataset larger than 2 GB, irre-
spective of the type of data.

a file between the parallel environment and the serial way,
and evaluating the system on the AWS cloud infrastructure
with various datasets. The research results show that the
proposed method increases storage efficiency by 70% while
reducing execution time.

A pre-trained deduplication model based on active learn-
ing to solve the issue of data duplication is proposed by Liu
X, et al. (2023) [24]. A Transformer that was tuned to man-
age how the deduplication issue appears in the classification
process was used in the development of the framework.
The Transformer has already undergone training. The Rdrop
technique was utilized in the deduplication model training to
perform data augmentation on each iteration of labeled data,
hence reducing the cost associated with human labeling.
According to experimental results, the developed performs
up to 28% better on benchmark datasets in Recall than the
previous state-of-the-art for deduplicated data identification.

Revathy, S., and D. Viji (2023)[25] proposed a system
that aims to reduce the storage space using a new dedu-
plication technique by employing hash indexing forums.
Sparse augmentation is the first preprocessing method used.
To create a hash index, the preprocessed files are further
divided into blocks. Related files are clustered together once
the similar blocks are identified using Semantic Content
Source and Distance Vector Weightage Correlation, which
calculates the document similarity weight. By testing 5 GB
of data, the suggested system achieves great performance

with a precision rate of up to 89.7%, and its recall rate is
87.6% better than that of alternative techniques.

The segmentation technology proposed in this research
by Guo S. (2023) [26] was based on dual sliding windows.
The double sliding window (DSW) structure reduced the
amount of memory used by the fingerprint table by di-
viding the data size of blocks into more typical pieces.
To increase cutting efficiency, researchers also incorporate
an algorithm for forecasting into the reduction system
(Markov prediction-based approach) to forecast the data
block’s cutting point. In addition, the paper suggested
a novel strategy for figuring out the deduplication ratio.
The experimental results showed that BSW (Basic Sliding
Window) performs poorly when dealing with ocean data, so
DSW outperforms state-of-the-art algorithms (BSW, TTTD,
FSC) in this regard and has a maximum restriction on the
block size.

To demonstrate the benefits and drawbacks of the pro-
posed technology in contrast to earlier research technolo-
gies. Table 1 displays the suggested system compared to
prior research efforts.

3. THE PROPOSED SYSTEM
The dataset for the proposed system includes a variety

of files of varying sizes and types. The system processes
each of these files one at a time. To show the efficiency of
the suggested method, three Linux file system datasets of

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


60 Saja Taha Ahmed: Deduplication using Modified Dynamic File Chunking for Big Data Mining

versions 4, 5, and 3, respectively, were used to construct
and evaluate the proposed method. Chunking, hashing and
indexing, and matching are the three stages of any dedupli-
cation system.

The proposed deduplication systems break files into
chunks and compare chunk data to detect duplicated seg-
ments. Many features are required to maintain the relation-
ships between files and chunks, which necessitate additional
resources beyond the deduplicated data. The chunk index
holds the chunk information for the chunks that have
been saved. Every deduplication system has a permanent
index that stores the information needed to reconstruct file
contents using file recipes. A list of chunk identifiers can
be found in a file recipe. Each of these chunk identifiers
is a unique identifier for a certain chunk. The file recipe
and the uniquely identifiable chunked data can be used
to reconstitute the original file contents (referred to as
logical data). The chunk identifiers are read, and their
related data chunks are loaded and concatenated in a specific
sequence, to recreate the logical data. The initial stage of the
deduplication process is chunking. It works by dividing the
income data flow (i.e., file) into distinct, independent chunks
using a repeating hash. A chunking procedure searches the
file for the dataset’s sequence of bytes’ highest probable
hash value, which is then used as a cut point. There are
two types of chunking algorithms proposed:

A. The proposed Dynamic Chunking Algorithm (DCA)
The suggested deduplication technique divides files into

chunks depending on the file’s most well-established pat-
terns regarded as file breakpoints or divisors. To put it
another way, cut points represent some internal aspects
of the files. The suggested approach takes advantage of
the chunk’s highest-probability bytes, which are sometimes
located at the chunk’s boundary and/or included in the
chunk. The recommended bytes are utilized to set the breaks
rather than utilizing arbitrators based on a criterion value
for per rotating hash calculation, which wastes resources
(i.e., typical Rabin fingerprint).

This phase’s main objective is to divide the incoming file
into manageable, nonoverlapping chunks using the DCA
technique. It will decide on the most common divisors
to define the chunk boundary or breakpoint based on the
dataset’s contents. In addition to using the original file’s
characteristic, the frequency of double bytes in the dataset
is used to establish the borders. The criterion is used in
DCA to either discover the cut point after the minimum
threshold value or to reach the maximum threshold value if
a determination of the breakpoint using the cut point criteria
fails. A minimum and maximum chunk size are promised
by DCA. Table 2 shows the DCA Parameters’ Implications.

The deduplication methodology can offer the best du-
plication detection ratio whenever the chunking method is
dependent on the file format if compared to fixed / variable-
size chunking methods. The suggested DCA algorithm is
shown in Figure 1, and the Chunking steps are as follows:

TABLE II. The Benefits Of DCA Variables

The variable Benefits

Min th To control very small chunks
C To identify chunks’ divisors

Max th. To control very big chunks

Figure 1. The Dynamic Chunking Algorithm (DCA)
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Algorithm 1. Dynamic Chunking Algorithm
Objective: Split the file into sections using Min Th. and Max Th., considering only
double-byte appearances.
Input: An array of bytes representing a file with various sizes and types.
Output: Various sizes of chunks.
Step1: Do this for each dataset file.
Set Len to Length of File
Compute the cooccurrence matrix between every two bytes in a file
Select two bytes that have maximum occurrence in the matrix as file cutpoint
Set div1 to byte1
Set div2 to byte2
Step2: While Not File’s End, Do
If Len = 0 ; Go to Step 3
Else If Len ¡ = Min Th.
Add file to Chunk list Go to Step 3
Else
Set the chunk to the file’s bytes from 0 to Min Th.
Set count to Min th.
While counting less than file length
if (count equal to file Length - 1)
add a chunk to Chunk list, break
Set ch1 to file[count]
Set ch2 to file[count+1]
if (chunk Length greater than or equal to Max th.)
add chunk to Chunk list, set chunk to null // add old chunk and create new one
if ((ch1 not equal to div1) && (ch2 not equal to div2))
insert new byte from file to chunk
else
if (chunk Length less than or equal to Min th.) insert new byte from file to chunk
add char until reach Min th.
else
add a chunk-to-Chunk list, set chunk to null
add old chunk and create a new one
Step3: Return file Chunk list
Step4: add file chunk list to dataset chunk list, Go to step1
Step5 : End

B. The Proposed Fixed Chunking Algorithm (FCA)
The suggested system breaks the file into equal chunks

as fixed-size blocks have typically been used in file sys-
tems to split a byte sequence into blocks. Although it
provides a simpler implementation and is extremely fast,
the fundamental flaw with this approach is that a single
byte introduced or removed in the sequence will cause all
block borders to migrate, resulting in different blocks. As
a result, following every insertion or deletion to the file,
different blocks would be produced. This is far from the
desired stability when using the local modification attribute.

The proposed FCA divides files into equal chunks based
on their size, improving the deduplication ratio significantly,
though not as much as dynamic content chunking. The file
length must be examined to ensure that it is long enough to
be divided into several equal chunks. Algorithm 2 depicts
the suggested Fixed Chunking Algorithm. Furthermore,
Figure 2 shows a difference in chunking between DCA and
FCA algorithms.

C. The Proposed Duplication Data Prediction
Traditional deduplication systems waste time trying to

address the collision problem and need a lot of processing
power and storage. This study suggests the X-hashing
strategy to conserve resources and speed up processing,
where X is number of hashing function in this paper
X equals three. Traditional hashing functions (SHA1 and
MD5), which are utilized by other content-defined chunking
methods, demand a lot of computing resources to calculate
hash values and a lot of storage space to store them. The
number of bits required to save our proposed hashes is
smaller than the number of bits required to save SHA1

Algorithm 2. Fixed Chunking Algorithm
Objective: Depending on the file size, divide the file into equal portions.
Input: An array of bytes representing a file with various sizes and types, size ofchunks.
Output: Chunks of fixed sizes.
Step1: Step 1: for each file in the dataset do
Set Len to Length of File
Set N to the size of chunks
If Len = 0 Go to Step 1
Set counter to 0
Step 2: While Not File’s End, Do
If (counter+N¡= len)
Set chunk to bytes of file from counter to N+counter
add a chunk to the Chunk list, set the chunk to null
add the old chunk, and create a new one
set counter to counter+N
else
to add the tail of a file
Set file’s chunk to bytes, from counter to Len
add a chunk to the Chunk list, set the chunk to null
Step 3: Return file Chunk list
Step 4: : add file chunk list to dataset chunk list, Go to step1
Step 5:End

(160 bits) and MD5 hash values (128 bits). Using the hash
functions indicated below, the approach can compute and
preserve one hash value for each chunk based on three
hashes computed previously using different keys for the
same chunk:

H1(C) =
L∑

i=0

N∑
J=0

(Ch[i] ⊕ k1[ j]) (1)

H2(C) =
L∑

i=0

N∑
J=0

(Ch[i] ⊕ k2[ j]) (2)

H3(C) =
L∑

i=0

N∑
J=0

(Ch[i] ⊕ k3[ j]) (3)

FinalHashValue = H1||H2||H3 ⊕ 1′s(48Bits) (4)

Since hash computing process involves two main steps
1-Key Generation : the preprocessing step involves gen-
erating k1, k2, and k3 are three Max Th. Arrays (rows)
of random numbers. The created rows are employed to
generate a series of integers once and store it for use in
equations 1, 2, and 3.
2- Hash Generation: where L is the size of a binary chunk
array and Ch is an array of binary chunk bytes, and N is
equal to Max Th. The XOX Function is used that produce
a 48-bit message digest value.

The proposed system can be implemented on any net-
work (clients and servers), and on each side, the incoming
file is divided into chunks according to DCA or FCA.
The final hash for the incoming chunk is compared with
preserved hashes in the index table. The distinct data
container preserves the incoming (non-duplicated) chunk if
there isn’t a matching chunk hash. The chunk identifier is
recorded in the database, and the final hash value is kept
in a hash table for any further computation. If an incoming
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Figure 2. Dynamic vs. Fixed File Chunking

chunk hash is redundant, on the other hand, the chunk’s
data table pointer is changed to the current chunk, and the
incoming (replica) chunk is released by raising the chunk
pointer count for that chunk. The amount of time needed
to match the byte-to-byte chunks will be reduced by this
comparison.

4. EXPERIMENTAL RESULTS
The conducted results were obtained by performing ac-

curate and equitable assessments. In this paper, we created
a deduplication storage system and assessed how well the
suggested algorithms performed. In order to compare the
behavior of the proposed system, the test outcomes are
evaluated using the following performance metrics
1- Equation 5 is used to express the Deduplication Ratio
(DR), which assesses the efficiency of the deduplication
procedure [27][28].
DR= (Total Input Data Size Before Deduplication) /(Total
Input Data Size After Deduplication) (5)
2- Calculate the Average Chunk Size (AVG) by dividing the
total data size by the number of segments overall [29][30].

A computer with a 64-bit Windows operating system, an
Intel CORE-i7 CPU, and 16.00 Gigabytes of RAM was used
to create the suggested system. In addition, C# and Visual
Studio 2019 were used to put the conceptual strategy into
implementation. The tests are conducted from two aspects:
the first is to study and analyze the proposed system’s
functionality in terms of dynamic and fixed chunking. The
second illustrates the suggested deduplication system’s ef-
fectiveness by comparing system behavior after identifying
the best parameters for both methods.

The performance of data de-duplication systems in gen-
eral is significantly impacted by the chunking technique

in a variety of ways. In order to discover shift boundary
concerns, the suggested dynamic deduplication methodol-
ogy defines the chunk borders by a file’s content. As a
result, the chunking strategy is significantly influenced by
the proposed double characters fingerprint when it tends to
use the most identical cut points across different files in the
investigated dataset. The suggested system’s performance
metrics results are displayed in Table 3. The evaluated
chunks with the best removal redundant ratio had chunk
sizes ranging from 128 to 1024 bytes.

TABLE III. Dynamic Chunking with Different Min and Max Thresh-
olds

Min Max All Chunk No. Dup. Ratio Dataset Size following Dedup.(MB) AVG
128 256 14957519 5854652 2.49 851 142
128 512 14801539 5740241 2.517 844 143
128 1024 14748296 5708517 2.518 843 144
128 2048 14732830 5699198 2.515 844 144
128 4096 14729442 5696623 2.514 844 144
128 8192 14728808 5696184 2.514 845 144
256 512 13945673 7687230 2.495 988 179
256 1024 13808903 7668521 2.488 986 180
256 2048 13523561 7476898 2.451 985 184
256 4096 13387328 7207395 2.421 984 186
256 8192 13189436 7115923 2.411 983 189
512 1024 12468982 9867295 2.200 1129 200
512 2048 12289735 9587624 2.221 1138 203
512 4096 12045396 9309184 2.220 1129 207
512 8192 11482650 9231980 2.221 1135 217

When chunks have a shorter content segment, the pro-
posed algorithm can achieve a greater DR; on the other
hand, adopting a long segment may not help duplicated
chunks be found. The impact of min-max th. on the
deduplication ratio is shown in Figure 3. Increasing the
min-max section leads to the removal of frequently shared
sequences among files as relevant chunks that occur over
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Figure 3. The Effect of Min-Max Th. on The Deduplication Ratio
Using DCA

the dataset’s files contain identical patterns that reflect
distinctive fingerprints. The deduplication ratio of 2.518 for
chunks of 128 to 1024 bytes results in the best deduplication
performance.

From the beginning of the file, a fixed deduplication
method works by splitting a dataset into fixed-size pieces or
blocks. However, the fundamental limitation of this strategy
is that if new chunks are inserted in the front or middle of a
file, the existing chunks will be shifted from their original
positions. As a result, the subsequent chunks will have a
new hash value, resulting in a lower DeDuplication ratio.
Table 4 illustrates fixed chunking performance with different
chunk sizes, the best-fixed deduplication ratio is attained
using chunks of 256 bytes with a ratio of 1.840. Figure 4
states the relationship of chunk size with the removal ratio
of FCA. Therefore, we can approve that minimum chunk
size has a better deduplication ratio.

The average size of chunks will increase if a longer
threshold is considered as presented in Tables 3 and 4. In
a hash-based prediction of de-duplication, increasing the
chunks typically implies expanding the lookup table, which
makes comparisons take longer. However, the suggested
duplication prediction increases the number of small chunk
lengths while incurring lower CPU overhead costs, increas-
ing the DR with an improvement in chunking time. More
redundant chunks must be removed in order to increase DR,

Figure 4. Impact of Chunk Size on Deduplication Ratio Using FCA

TABLE IV. Fixed Chunking with Different Chunk Size

Chunk Size All Chunk No. Dup. Ratio AVG
256 8620593 7034220 1.840 244
512 4354557 3583603 1.172 484
1024 2223128 1846807 1.159 949
2048 1160020 972700 1.145 1819
4096 633305 532385 1.132 3332
8192 376929 314780 1.122 5598

which can also reduce the size of the lookup table.

The proposed DCA has chunks with less average size
even for larger thresholds which are around from 142 to
217. In comparison to a fixed chunking algorithm, which
has chunks of average size from 244 to 5598. Figure 5
and Figure 6 show the average size of chunks for the
dynamic and fixed chunking algorithms, respectively. So
dynamic chunking has a less average chunking size of 142
bytes for 128-256 thresholds. Because the proposed DCA
leveraged the internal representation of the file to split it
into segments since the contents of related segments are
the same. thus, the variable-length deduplication approach
(DCA) is confirmed to handle duplicated chunks better than
fixed chunking (FCA).
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Figure 5. The Average Size of Chunks for The Dynamic Chunking Algorithm

Figure 6. The Average Size of Chunks for The Fixed Chunking Algorithm
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Figure 7. the Proposed FCA and DCA Chunking Speeds on Two
Processors.

We configured the suggested data deduplication system
on an Intel i7-8550U processor clocked at 1.8 GHz in order
to evaluate FCA and DCA. To more precisely evaluate the
chunking speed, a second Intel Gold 6130 CPU operating at
2.1GHz with 128GB of RAM is also employed as a bench-
mark processor. We consider the best-fixed deduplication
ratio to be attained using chunks of 256 bytes with the ratio
of 1.840 for FCA. The best deduplication performance is
achieved for chunks of 128 to 1024 bytes with the DCA
deduplication ratio of 2.518. Figure 7 shows that the FCA
is generally faster than the DCA since it has a simpler
implementation and is extremely rapid because it lacks
fingerprint judgment. The two recommended algorithms’
speed differences are reasonable because DCA, which uses
fast key and hash generation for chunking, simplifies the
hash judgment.

5. CONCLUSION
This research explores the relationships and influence

of various parameters on the effectiveness of the dedupli-
cation system utilizing the proposed DCA and FCA. The
combination of two innovative algorithms with the proposed
hash-based prediction approach enables remarkable storage
conservation by consuming less space and maximizing
processing throughput. The DCA chunking algorithm is
recommended for enhancing the DR and hence chunking
throughput. According to the findings, the double group of
bytes has a larger DR for chunking process completion. In
addition, the best Min-Max Th. is 128–1024 bytes. As a
result, DCA outperforms FCA in terms of DR and average
chunk size.

In future studies, we’ll look into dynamic allocation
for specific keywords of divisors, such as using a set of
divisors that may be updated over time. Furthermore, once
the computer configuration is upgraded, we will study larger
datasets.

Finally, a successful deduplication system must establish
a proper balance between the variables that affect the
system’s ability to detect high levels of duplication with
minimal overhead processing.
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