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Abstract: The recent availability of powerful (SBC) Single Board Computing devices has facilitated edge computing, filled a gap
with lower power consumption at the edge. Preventive maintenance intervention in the industry is needed. These predictions with
data privacy and accuracy to take care of chronic spare replacements before things fail. We are proposing preventive maintenance
procedures based on (IIoT) Industrial Internet of Things data from multiple sensors installed in an industrial setup across a varied
geography. The SBC ensured low powered 15W of power operation mode and was adequately cooled with a passive aluminium
heat-sink and fans. We are proposing a unique method of federation, specifically, using HDF5 model file transfer. Preset cron jobs at
the clients allow real-time federation as a quick solution using oft-the-shelf hardware. The setup has a central server or alternatively
a cloud server for fallback, in the monitoring station and is implemented using Split Federation and Linear, DNN, CNN, RNN
models. Federated Learning (FL) models were used to predict the sensor values and make decisions. The Machine Learning (ML)
techniques only operated at the edge. Data privacy is upheld and maintained. The quick and simple approach can help in a cheaper
implementation in public service projects where site data needs to be private. Even the possibility of power cuts in rural areas
will not affect the federation and decision making can happen even in the harshest of field situations. This has a lot of impact in
decentralized decision making. Failure patterns can be identified and in general, an accurate model can be generated with limited resources.

Keywords: Synchronized models, Federated Learning, MQTT, Edge Computing, Single Board Computers, Industrial Internet of Things,
Split Learning, Split Federation, Predictive Maintenance, Algorithmic preventive maintenance, Failure Prediction.

the localized data. All the learning is eventually aggregated
and produces a global ML model [6] [7]. This research has

1. INTRODUCTION
FL is a distributed machine learning technique wherein

various devices on the edge, first train an ML model on
their data [1][2]. They do not share their data with other
devices. This method is particularly relevant for Industry
4.0 and eventually in Industry 5.0, where there is a need
to analyze vast amounts of data generated by various
connected devices [3], without compromising data privacy
and security. In Industry 4.0 and 5.0, Federated Learning
will be implemented to train models on data collected
from connected machines and devices, allowing for real-
time analysis and improved decision-making in areas such
as predictive maintenance, quality control, and process
optimization [4] [5]. We were motivated to pursue this
approach to create a solution having low cost and easy to
implement.

We have implemented a split and federated learning
approach wherein various participants train their models
on their data which is local only to themselves. This is
then shared with a central coordinator without including

the objective to achieve a simple method of federation at
scale using off-the-shelf and easily available components. It
also had to be quick to implement in rural industrial settings
where the possibility of power cuts had to be factored in.

Privacy takes precedence when dealing with sensitive
sensor data. Related IIoT device data can be modelled using
the same algorithm. Among the sensors, those which gen-
erate sensitive data should be secured well. Different sensor
data can be treated with varying levels of secure algorithms
as per the application. Electronic devices generating data
securely can be aggregated at the edge using an encryption
layer. Ever-increasing data points can be resampled as
per the forecast range in question. Before establishing a
connection with the edge, the security protocols need to be
decided upon. Requesting or publishing data to the broker
can be done with a secure key or password. Along the data
flow paths, a minimum number of hops ensures low latency.
Online data flow paths are recommended to be implemented
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with a secure transport layer [8].

In Industry 4.0 and 5.0, federated learning can have an
impact on improving collaboration and the sharing of learn-
ing among different organizations while maintaining data
privacy and security. It can be used in various applications
such as predictive maintenance, predictive quality control,
and supply chain optimization [9]. By training models on
decentralized data, federated learning enables organizations
to leverage data from multiple sources and make better use
of their data, ultimately leading to improved accuracy and
performance in Industry 4.0 and 5.0 applications [7].

The current paper is organized into five sections. Intro-
duction, motivation and applications are covered in the first
section. In part two, a detail literature study was carried
out. Section three is devoted to the adopted methodology,
experimental work and setup of the experiment. In section
four, the results and findings are discussed. In the final
section, the investigation is concluded, and future scope is
discussed.

2. LITERATURE REVIEW

Christopher Briggs et.al. [3] suggest various FL strate-
gies. This is then followed by a personalization step show-
ing an improvement in model’s performance. They show
that FL can achieve this improvement by reducing the
computation load when compared with localized learning.
They provide information about aggregating predictions
to be able to build private load forecasting applications.
Modern distributed machine learning like FL trained load
forecasting (LSTM) Long Short-Term Memory models. At
the same time, it preserved the privacy of data in the field
of power consumption at the customer’s locations. It would
enable a wider implementation of smart energy meters while
being concerned of privacy at the same time. A comparison
among different FL training methods and other benchmarks
from regular training strategies was explored. The effect of
the same on the level of forecasting was studied. Analysis
of FL. methods was done, comparing it to a variant of FL
designed to perform well to the task of forecasting the
loads. They also evaluated numerous efficiency issues in
computation, in the FL system used in forecasting [3].

Mojtaba Vaezi et.al. [4] suggest how the paradigm
will shift in the next decade is made. Integration of new
technologies associated with each other, like (Al) Artificial
Intelligence and networks which are not terrestrial, are
detailed upon. The potential of implementing deep-learning
methods alongside emerging techniques in FL has been
discussed. Their impact on improving communication in
IoT networks has been discussed. Even future research
pathways going further than the current 5G technology in
IoT networking are discussed. Digital transformation which
was initiated by IoT have inspired trends across academia
as well as the industry. It was identified that the use of IoT
creates real global interconnect. Al controls the IoT enabled
gadgets as well as the decisions taken by these gadgets.
The so-called ‘edge’, increases its proximity to the cloud.

The authors identified several issues in the privacy matters
and security concerns in these situations. The increase in
IoT security issues alongside the rapid global interconnect,
makes IoT security threats and the related issues of data
privacy concerning. This will need innovative and novel
ideas to counter the threats in this domain in the near future

[4].

Yi Liu et.al. [6] had conducted a research where Convo-
lutional Neural Network (CNN) was used. The authors used
the CNN-LSTM model. The finer subtleties were captured
using units of CNN. This method maintains the benefits
of LSTM to predict data from a time series. They used a
gradient compression technique to yield results in predicting
in the moment getting good results in detecting anomalies as
well. Bandwidth needs were reduced and it even improved
communication efficiency. It was noted that experiments
based on datasets from the real world, had good results
in detecting anomalies accurately using the framework
proposed by them. It improved on traditional ways of doing
the same reducing overheads in communication. Finally,
they proposed an anomaly detection score. They normalized
the time series sensor data collected [6].

IoT data generated from multiple devices used in sensing
humidity in a study by Mohamed Amine Ferrag et.al.
distances using ultrasonic methods, sensors detecting the
level of water in applications, patient heart rate, flame,
acidity level pH and moisture in soil etc., were collected.
The study analyzed some attacks in the connectivity and
communication protocols. (DoS) Denial of Services in
network attacks, man-in-the-middle type of attacks, (DDoS)
Distributed Denial of Services in attacks, gathering of
private information were studied. (SQL) Structured Query
Language Injection and other type of malware based attacks
were also elaborated upon. Features extracted from varied
sources like alerts, syslogs, resources, network data traffic,
were studied and new features with high inter-relations were
discovered. At the end of processing the above mentioned
data set with security fall outs, the authors provided a
preliminary exploration and then they analysed the sensor
data. They evaluated different ML strategies in both modes
: federated as well as central-server based learning [7].

Edge Computing (EC) is a scenario where sensors
can process the data collected. Even stacked intermediate
elements can process the data. The methods used in edge
computing, reduce bandwidth and communication related
costs. Processing speeds increase if the edge device is pow-
erful enough. In one study, Taimur Hafeez et.al. explored
IIoT methods to carry out (PM) Predictive Maintenance.
They discussed how the collected sensor readings can be
processed and where it can be analyzed. They presented
sampling concepts along with techniques to reduce data
communications. The quantity of data that was transmitted
to the cloud, was diminished. Accuracy might be lost
when ML algorithms have to deal with reduction in data.
Alternative approaches move ML based algorithms nearer
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to the source of data and achieve a reduction in transmitted
data. These techniques are categorized broadly into three
types: Device & Edge, Edge & Cloud, Device & Cloud.
The authors demonstrated an architecture in which edge
computing can be implemented for sensor data reduction for
preventive maintenance of equipment. In instances where
the connection between the sensor node and the central
server where the readings are processed, fails, there was
a study which used ML and monitored how the devices
performed. These methods were only edge dependent. The
ML gets updated as soon as analytic processes running
on the sensor information, locates anomalies at the edge
layer. The edge connects to the cloud to push the update.
The method used techniques like SNN, ANN. Some other
methods like CNN, HOG etc. were also tried [9].

Abdul Rehman et.al. researched on an FL based frame-
work that can aggregate models from contributions from
different clients. The data set it used could train models
on an individual basis using DNN (Deep Neural Network).
Every client examines the results three times resulting in
over 80% accuracy. It found that their framework could
detect attack from alternate channels. They ensured that
the system logs were purged of information that would
compromise the privacy of individuals by anonymizing the
data prior to training the model [10].

Mahmoud Parto et.al. mentioned a time based architec-
ture for IoT. It mentioned techniques for ML at scale. The
study focused on the processes of manufacture. They had
a general architecture with three layers. They created an
edge computing layer with sensors. Post that, they computed
Al tasks in the fog, as they called the intermediate layer,
and a central cloud server was in charge of federating the
models. The whole setup was presented as a (FL) Federated
Learning system with prior processing getting done at the
edge, and the ML layer trained models incrementally in
what was termed the fog layer. Aggregation of the models
happened centrally in the cloud. High performance was
achieved with this scalable architecture using hardware with
fewer resources. Stacks of Raspberry Pi 3B devices were
clustered and deployed, balancing minimum storage and
computing power with better performance [11].

Minggian Liu et.al. mentioned in a paper how the
reduced the frequency and pre-treated the signal from the
nodes. The representations of the signals were then trained
with fusing the features. FL methods combined with deep
learning were used to classify the signals at each node.
The performance of the classification was found to be good
when the results at each sensor were aggregated to the
central aggregator [6].

Yung-Lin Hsu and Hung-Yu Wei saved a lot of energy
by having the processes execute at the edge and also
reduced loss in performance [12]. Xianyi Cheng et al.
used fast performing classifiers that culminated in accurate
results using stage classifiers. Decision trees were developed

for each subset of sensors. The predictions were accurate
when used along with state transitions [13]. Mi Wen et al.
used deep learning to detect the theft of power on the grid.
(TCN) Temporal Convolutional Networks were used and
a lot of experiments resulted in a very accurate detection
rate inspite of lower compute power. FL frameworks were
deployed to quantify the footprint of energy usage and
carbon emitted in a decentralized setting. The authors
architected green designs for FL structures [14].

Overall, a lot of new paradigms of learning have evolved
in the industrial settings recently. One such is the continuous
learning or (RL) Reinforcement Learning paradigm by
Stefano Savazzi et al. where the model is trained at the
edge itself in IIoT devices involving a periodic repetition
continuously. The process repeats as per the varying pro-
cesses in the industry depending on a timely schedule [15].

Andrew Hard et.al. [16] Concluded that the federated
algorithm, which facilitates model training on a more finely
tuned and high-quality dataset tailored to this particular
application, surpasses conventional server-based training
in terms of predictive precision. The authors execute a
comparative assessment between server-based training em-
ploying stochastic gradient descent and training carried out
on individual client devices using the FederatedAveraging
algorithm.

The federated learning framework empowers users
through enhanced control over their data usage and stream-
lines the incorporation of privacy safeguards as an inherent
feature through distributed training and data aggregation
across a diverse array of client devices. Their primary
aim is to enhance the predictive text functionality within
a smartphone-based virtual keyboard [16].

Karim Gamal, Ahmed Gaber et al. [17] found that The
empirical results derived from various model configurations
indicate that, in either uncontaminated or adversarial sce-
narios, federated learning achieves similar performance to
traditional centralized training when predicting emojis in
multiple languages, even when the data comes from diverse
sources with varying distributions.

To conduct this research, emoji prediction datasets were
gathered from two sources: Twitter and the SemEval emoji
datasets. These datasets served as the basis for training and
evaluating different transformer model settings. Notably,
the trained transformer models demonstrate superior perfor-
mance compared to alternative techniques when tested on
the SemEval emoji dataset. Furthermore, federated learning
retains its inherent privacy and distributed advantages in this
context [17].

Faris F. Gulamali and Girish N. Nadkarni et.al. results
demonstrate that federated models outperformed their local
counterparts, even when assessed on local data within the
test dataset. Their performance was on par with models
using pooled data. Federated learning presents a viable alter-
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native to the conventional single-institution approach while
circumventing the challenges associated with data shar-
ing. Models are generated and updated on-site to achieve
specific learning objectives. To illustrate its effectiveness,
the authors provide a practical example involving COVID-
19-associated AKI. In the context of cross-silo federated
learning, data remains localized, and the raw data is retained
at its source. Notably, the improvements in performance
at individual hospitals showed an inverse relationship with
dataset size, implying that smaller hospitals have substantial
room for improvement with federated learning methodolo-
gies [18].

After a detailed study of literature, we concluded that
there has been a rapid shift in paradigms in the industry.
IIoT and the related ML techniques used to analyze data
have been slowly moving from the central server to the
edge as time goes by. This means more computation can
happen at the edge, and the central server is relieved of
the processing load. This also means more data security
and added privacy in the future for big data analytics of
industrial sensors to aid in decision-making in the industry.
The research gaps identified in the literature are 1) cost 2)
data security 3) computing at edge. These research gaps are
fulfilled by this research.

3. THE METHODOLOGY

In experiment setup multiple sensor data forecast for
multiple outputs. After obtaining multi-time stepping, de-
veloped windows in the data for it to be reusable for Linear,
DNN, CNN, RNN models.

With the advent of powerful SBC (Single Board Com-
puting), the processing power available at the edge has
grown tremendously in the past couple of years. The
suggested layers in the IIoT network with high-frequency
sensor data are the centralized cloud, and the edge device
further connected to the sensors on the machinery. The
SBC Edge device uses an MQTT broker and for some
IIoT devices, their Modbus layers to aggregate the sensor
data in the IIoT network. This data is then analyzed at the
edge [11]. The time-series data collected is processed at the
edge itself and the central server applies federated learn-
ing methods to analyze, forecast, and create maintenance
suggestions, and the best time of operation for sensitive
machinery in the industry. This leads to improved efficiency,
reliability, and security in industrial processes.

Some commonly used federated learning algorithms for
IIoT include [19][20]: Federated Averaging (FedAvg), Split
Learning. We have used a combination of FedAvg and
Split Learning in our experiment. Time series sensor data
prediction refers to the process of being able to predict the
next values in a set of data generated by sensors over time.
This is an important application in Industry 4.0, as it can
help in forecasting equipment failures, detecting anomalies,
and improving operational efficiency.

A few machine learning techniques used to make time-

series data predictions are Autoregressive Models, Mov-
ing Average Models, Autoregressive Integrated Moving
Average Models, Seasonal Autoregressive and Integrated
Moving Average Models, Recurrent Neural Networks, Long
Short Term Memory.

A. Experiment Setup

In an industry, various machines on each shop floor
are connected wirelessly as well as wired to the network
to relay sensor data to the central server. These typically
used ESP32 / ESP8266 based implementations in their
architecture. Each one of the sensor relays communicated
with Message Queue Telemetry Transport (MQTT) broker
running on the edge device at regular intervals, relaying
sensor data which was processed only at the edge. The
resulting models were transferred to the cloud, as part of
the split and federated learning process. Our edge setup
consists of multiple SBCs interconnected to form an edge
cluster. This setup performs parallel processing at the edge
and runs the code from the central server.

Hardware and connections: We have used multiple
Raspberry Pi 4 — 8GB boards along with a single Raspberry
Pi 3B+ running as a storage controller, to run the open
source software stack in this experiment setup. Each node
relaying the data runs on either an STM32 or an ESP32
micro controller based board with custom-coded embedded
software that relays the telemetry data to the MQTT server.
The embedded code was programmed with a telemetry
period of 20 seconds to keep the data up to date for
processing.

Cluster: Our SBC cluster was assembled using the
following components as depicted in Fig 1.

Units utilized: Raspberry Pi 4 - 8GB boards — 2 units,
Raspberry Pi 3B+ Storage controller — 1 unit. USB SSD
boot drives — one for each SBC. Ethernet cables (for con-
necting the SBCs to the network switch / router). Network
switch / router with 8 ports to accommodate the SBCs.
Power adapters for the SBCs — capable of delivering 5.1V at
3 Amperes each. Cooling — solid aluminum heat sinks with
fans to keep the boards at less than 45 degrees centigrade.

Open source software stack: We chose commonly avail-
able open source software components like the Raspberry Pi
OS alongside a stack consisting of real time databases like
InfluxDB. Open source observability software like Grafana,
Message queueing using the Mosquitto MQTT layer, SSH
clients like PUTTY for remote headless access to the SBCs
and Ansible — an open source automation tool, were used
to manage the cluster throughout the experiment.

Software flow for the cluster: This was our general
workflow that we implemented to get the cluster up and run-
ning at the edge. Preparing each of the SBCs in the cluster:
The latest version of Raspberry Pi OS was downloaded and
flashed onto the SSD. Software used can be the Raspberry
Pi Imager tool or Balena Etcher. The USB adapted SSD
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Figure 1. SBC cluster connections with two RPi 4 — 8GB and one
RPi 3B+ Storage Controller

cards — 500GB was plugged in into the Raspberry Pi boards
USB-3 slots as shown in Fig 2.

B b4 550

Figure 2. USB SSDs ensure quick bootup and optimal edge
performance with 300Mb/s throughput

Setting up networking in the cluster: Each SBC is
connected to the network switch / router using Ethernet
cables. It is ensured that all SBCs and the terminal computer
are on the same local network.

Powering on the SBCs: The power adapters to each SBC
is connected and turned on, one by one. Each SBC in the
cluster takes about 2 minutes to boot up completely. Once
booted, the cluster is ready for use at the edge.
Configuring the SBCs: The terminal computer is connected
to the same network as the cluster. DHCP IP addresses
assigned to each SBC is got from the router’s configuration.
An IP scanner tool can be used alternatively or even running
nmap over SSH, works well. Each SBC can be accessed
via SSH using the IP address and the SSH client such as
PuTTY.

Configuring the cluster: On each SBC, Ansible is installed
by running the following command: sudo apt update sudo
apt install ansible An inventory file listing the IP addresses
or hostnames of all the SBCs in the cluster is created. It is
then saved for use in scripts later. An Ansible playbook
was created to define the desired configuration for the
cluster, such as software installations or system settings.
The Ansible playbook was executed using the following
command: ansible-playbook -i {IP Addresses;, jplaybook;
Testing the cluster: Once the above configuration is com-
plete, each cluster can be tested by executing parallel
tasks or distributing workload among the SBCs. Parallel
commands can be executed across all the SBCs using the
Ansible command: ansible all -i jIP Addresses; -a ”juser
commands;”

Power consumption: We found that the typical power con-
sumption of this edge cluster setup in Fig 3. was around
45W at peak processing loads. The board temperatures
averaged around 45 degrees centigrade.

Figure 3. Edge Cluster power usage is typically around 45W at
peak processing demand

Data flow: The C code in the embedded devices creates
a JSON formatted message that is relayed to the MQTT
server daemon running in the SBC cluster. The MQTT
broker relays data in the JSON formatted message. This
is processed using Telegraf and then is stored into the time
series database InfluxDB.

Data aggregation: The TICK stack we chose is a set
of open-source tools for managing and processing time-
series data. The Telegraf module is a plugin-driven server
agent that collects, processes, and delivers metrics and
events from multiple sources like sensors into the chosen
database. The InfluxDB database is scalable and is a very
high-performance time-series database which is designed
specifically to handle extremely large volumes of time-
stamped data. We used this to store the sensor stream data.
Chronograf is a web-based user interface (UI) provided by
the TICK stack that helped us visualize and explore the
data stored in the time-series database. This provides the
tools to create dashboards and helps in managing alerts
based on preset conditions as depicted in Fig 4. Kapacitor
is a processing engine in the stack that enables real-time
streaming along with real-time data processing. It allowed
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us to define and execute tasks on the data which included
aggregations, downsampling of the data, anomaly detection
in the data stream, and also alerted us based on preset
conditions.

Cluster

Factory Power - Active / Apparent / Reactive

250 W
200W
150 W
100w

50 W

09:15:00 09:16:00 09:17:00
entPower power/SENSOR == Power poy

09:18:00
SENSOR

09:19:00

tivePower power/SENSOR

Voltage Fluctuations

240 Volts

238 Volts

236 Volts

234 Volts

09:17:00 091 09:19:00

Figure 4. A dashboard from Data stream

To aggregate our sensor stream data using the TICK
stack described above, we followed the steps as described
below:

We first installed and configured Telegraf. We set up
Telegraf on the cluster at the edge where the sensors are
located. Telegraf provides various input plugins to collect
data from different sources, such as MQTT, SNMP, or our
custom written scripts. We configured Telegraf, specifically
the telegraf.conf file, to collect data from the sensors over
the wi-fi network and then send it ahead into an InfluxDB
bucket via MQTT.

We then installed and configured InfluxDB. Specific care
was taken to configure the InfluxDB bucket to receive and
store the incoming sensor data sent by Telegraf. We define
a bucket with retention policy to always keep data forever,
since we would need it for comparisons later. To verify
data ingestion by the database, we ensured that Telegraf is
successfully sending data to InfluxDB. This was done by

checking the InfluxDB bucket using the web interface, to
confirm that the data is being stored correctly.

Next we explored and visualized the data using Chrono-
graf. The Chronograf web user interface was used to
visualize the sensor data stored in InfluxDB. We created
dashboards and configured queries to display the data in
meaningful ways using the Flux query language. Since
Chronograf provides various visualization options, such as
line graphs, bar charts, and scatter plots, it was easy to get
a real time view of the data of different time slices on the
fly.

We could process the data using Kapacitor. Performing
real-time calculations or analysis on the sensor data, we
configured Kapacitor by defining tasks in Kapacitor using
its Domain Specific Language (DSL) to perform aggre-
gations, downsampling the data, detecting anomalies, and
other data transformations. We also set up different alerting
rules in Kapacitor and generated notifications based on
predefined conditions.

Data Collection: Data was collected for 4 gauging
machines connected in a single shop floor at a factory in an
Industrial Estate at Hadapsar in Pune. The machines were
supplied power through the power sensor which is calibrated
to send data to an MQTT every 20 seconds. The console
of the power monitor and its data logging setup is shown
in the Fig. 5 : The dataset regarding voltage, machines
information, timestamp, sensor information, sensor data is
stored in the CSV file. Total 14000 records are stored and
the classifier is trained on the dataset.

Generic

PowerMonitor

Consoles

Figure 5. Console for Data Gathering

Data analytics: The real time stream of the telemetry
data from the shop floor is presented in customized dash-
boards reflecting the current situation at the factory floor.
Similarly, predicted values, after processing the telemetry
data stream are also presented in real time projected-
timeline dashboards shown in fig 6.

Data federation: Tensorflow running on the same SBC
cluster would have ensured that processing could have
happened on the edge. But since Tensorflow does not yet
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Figure 6. Edge Cluster power usage is typically around 45W at
peak processing demand

exist for this particular variant of ARM64 processor, Jupyter
Notebook was installed at the edge to run the process. The
files were synchronized using rsync and a cron job managed
it on a schedule.

Predictive analysis: The learning process on each SBC
cluster transported through rsync. Eventually when Tensor-
flow can be installed at the edge SBC cluster on these
ARMG64 boards, the actual code can run at the edge without
having the rsync. Distributed computing frameworks like
Kubernetes or Apache Spark to utilize the cluster’s capa-
bilities for distributed processing or running containerized
applications could be explored in the future.

Fig.7 below, shows the general structure of the central
server federating data at the edge devices and their individ-
ual sensor relays at the edge. Various time-series data like
voltage, current, power, temperature, vibration, air quality,
humidity etc. are relayed to the edge device. A few sensor
nodes were wired to the network using ethernet cables,
but most sensor devices relayed the data and operated over
wireless wi-fi connections.

B. Experiment Flow:

The edge devices at each location do not relay the sensor
data to central cloud. The reading information collected
from the sensors is processed at the edge device itself,
thereby maintaining the data privacy at each location.

The edge has become increasingly powerful, with most
analytical processes completed in this layer. Businesses
requiring new solutions on the periphery, combined with
a rapid increase of data from these sensors, have begun
migrating to process most computation on the edge. Some
edge nodes collect lots of private data which is modeled at
the edge itself. Software plays an important role in man-
aging the edge data layer with (API) Application Program-

CENTRAL SERVER

/N T

Edge Device

Edge Device at
at MIT UsA
Edge Device Edge Device
=2 “ a =
? Industry 1 Industry 2 ?
[ —
N N Aﬁ Aﬂ . Sensor Relay 1
NEETT B > N
~ Sensor Relay 2
Sensor Relay 2 N\ N
Q Sensor Relay 1 | . Sensor Relay 1 . Sensor Relay 3

Q Sensor Relay 3 [

E Sensor Relay 2

’I

Sensor Relay 2

lloT

lloT N N N Air Quality
Voltage Sensor Relay 3 Sensor Relay 3 Index Sensor
Sensor Power Sensor

Current
Sensor

lloT
Temperature
Sensor
Humidity
Sensor

lloT
Vibration
Sensor
GPS Location
Data

—

Figure 7. A flow of the Enterprise Server and Edge Devices with
IIoT sensor relay

ming Interface access, locally served dashboards combining
integration with automation and controls, and delivery to
alerting systems. All these systems in tandem with the cloud
native analytical software at the head quarters, are used to
make real-time business decisions, both at the edge as well
as in the wholistic level. Edge and cloud data, have strict
privacy policies at times. There are many considerations
when choosing the edge or cloud for storage and compute.
Finally developers want to ensure these two data layers
work together in an efficient way, ensuring privacy and
delivering centralized business insights in near real-time.
Federated Learning has an important role to play in this
type of situation.

Publish : Sensor Data

|

Publish :
Sensor Data

Subscribe :
Sensor Data

MQTT BROKER

Figure 8. MQTT - Publish and Subscribe

In HTTP, the data is transferred between the client and
the server. In (MQTT) — Message Queue Telemetry Trans-
port, the exchange of data is facilitated through publish-
subscribe communication protocols as depicted in Fig.8.
This was initially developed by IBM and is now popular
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in the IoT space [21][21]]. MQTT addresses the need
for rapid communication in IIoT and stays distributed at
the same time. Another popular protocols for sensor data
exchange is Data Distribution Service (DDS). In addition to
that, there exist alternatives like XMPP, RabbitMQ etc. This
experiment uses MQTT and HTTP for the IIoT gateways,
sensor devices and edge devices .

Since we are experimenting with a research FL simula-
tion , we have not implemented TFF functions as yet. TFF
is not yet primed for installation on Raspberry Pi 4 which
is the edge device of our choice [22]. The code is always
executed and tested eliminating any tff.* reference in the
code. This can be used again without the presence of TFF.
Client training loops in FedAvg is deployed as shown in fig

9 .
.
ML Model
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Figure 9. The Federated Learning Model

FL is an ideal technology for IoT applications as its
efficiency and protection model make it well-suited to
this type of application. Some notable examples of these
applications include wearable devices, self-driving cars, and
smart intelligent homes. This turns complex with plenty
of data waiting to be collected at each step in order to
operate smoothly. The limited bandwidth availability of FL
makes it difficult for these devices to relay all the data at
regular intervals, which can result in slower response times
or decreased performance [23]. Here, we have collected
the voltage fluctuations at a location in our IIoT network.
The industrial unit where this was deployed exists in an
agricultural zone with unreliable power supply in a rural
zone. The intent is to study the fluctuations over a periodic
cycle, and study seasonal variance of power-cuts and times
in the day when maximum fluctuations occur. Sensitive
equipment can be prevented from operating during times
prone to unreliable voltage input from the power grid. With
the analytic information, it should be able to suggest best
times of operation of sensitive gauging equipment which
can be damaged due to such fluctuation and cuts in supply

voltage.

plot_cols = ['Voltage']
plot_features = df[plot_cols]
plot_features.index = date_time

_ = plot_features.plot(subplots=True)

plot_features = df[plot_cols][:480]

plot_features.index = date_time[:480]
_ = plot_features.plot(subplots=True)
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Figure 10. The voltage sensor data across 3 days

The voltage data was published to the broker every 20

seconds. The edge device subscribed to the sensor message
queue which contained the sensor readings. This was done
over a period of a month. For this study, the data from
three days was used to perform the experiment of creating
a model at the edge and sending it across to the central
server as shown in Fig 10. The seasonal daily variations in
the grid supply voltage, the periods of heavy fluctuations
and stable supply slots can be studied in this sample. This
model ends up being vital in taking decisions on the best
time to run sensitive equipment which are vulnerable to
heavy fluctuations.
Baseline performance for comparison: Prior to building
a model to train, it is recommended to have a baseline
performance, to compare with the incremental models we
would build in the future. Initially, we have to be able to
predict the voltage an hour ahead, when we have the present
values of each feature. We initialize with a model that would
give us the present voltage as a forecast, thereby forecasting
no change at all. Since the voltage from the power grid
fluctuates around the 230V mark, and is OV during power
cuts, this can be considered a fair baseline to start with.

Long tail end data in the figure is the power cut part
of the normalization. After the normalization step, we get
voltage sensor data that is now as shown in Fig 11. We
created windows across the data: The number of time steps,
width of the input along with the windows labels. For the
time gap between the windows, voltage is used as inputs
along with the labels.

C. Model Configuration:

We attempted a single output forecast initially. Then
for multiple sensor data, we also forecast multiple outputs.
After obtaining single time stepping and later multi time
stepping, we created windows in the data in order for it to be
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reusable for Linear, DNN, CNN, RNN models. TensorFlow
data is a bunch of arrays [21]. At the outer index through
out all examples, lies the batch. At the middle, the time
or space indices exist as width and height and the indices
at the core are called as features. We took a set of three
nine-time step windows, using five features at each step of
time. This then obtains a single time step single featured
label. The label has a single feature since the window got
initialized as label cols=[’Voltage’]. We built a model that
forecasts labels with a singular output shown in fig 12.

class Window():
def __init_(self, input width, label width, shift,
train_df=train_df, val_df=val_df, test df=test_df,
label_cols=None):

self.train_df = train_df

self.val_df = val_df
self.test_df = test_df

self.label cols = label cols
if label cols is not None:
self.label_cols_indices = {name: i for i, name in

enumerate(label_cols)}

self.column_indices = {name: i for i, name in

enumerate(train_df.cols)}

self.input_width = input_width

self.label_width = label width

self.shift = shift

self.total window size = input_width + shift

self.input_slice = slice(@, input_width)
self.input_indices = np.arange(self.total window_size)[self.input_slice]

self.label_start = self.total_window_size - self.label_width

self.labels_slice = slice(self.label_start, None)
self.label_indices = np.arange(self.total window_size)[self.labels_slice]

Figure 12. Windows in the voltage sensor data

Single stepping model:

The initial model we created with data predicts a sin-
gular feature value. One step of time (an hour ahead) using
only present conditions of the voltage. The models were
built forecasting voltages an hour ahead. A window object
to create these singular-step input and label combinations
is as in Fig 13.

The blue line depicts voltage for every step of time. All
sensor data is received by the model, but the plot above only
maps the voltage. Labels is green dots depict the forecast
values of the target. Dots are plotted at the times of forecast.

Time [h]

Figure 13. Voltage sensor data inputs with forecasting

This causes the label range to shift a single step ahead as
compared to the inputs. The forecast is depicted as orange
crosses at each step of time. In case of a perfect forecast,
the crosses would coincide with the labels as in Fig 14.

MAX_EPOCHS = 20

def compile_and_fit(model, window, patience=2):
early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss',
patience=patience,
mode="'min')

model.compile(loss=tf.keras.losses.MeanSquaredError(),
optimizer=tf.keras.optimizers.Adam(),
metrics=[tf.keras.metrics.MeanAbsoluteError()])

history = model.fit(window.train, epochs=MAX_EPOCHS,
validation_data=window.val,
callbacks=[early_stopping])
return history

history = compile_and_fit(linear, single_step_window)

val_performance('Linear'] = linear.evaluate(single_step_window.val)

performance['Linear'] = linear.evaluate(single_step_window.test, verbose=08)
Epoch 1/20
66/66 [ ] - 25 16ms/step - loss: 6.4927 - mean_absolute_

error: 1.2882 - val_loss: 0.6738 - val_mean_absolute_error: 0.7947
Epoch 2/20

66/66 [ ] - 1s 9ms/step - loss: 6.2150 - mean_absolute_e
rror: 1.2605 - val_loss: 8.6467 - val_mean_absolute_error: 8.7786

Epoch 3/20

66/66 [ ] - Bs 7ms/step - loss: 5.9474 - mean_absolute_e
rror: 1.2334 - val_loss: 8.6182 - val_mean_absolute_error: 8.7612

Epoch 4/20

66/66 [ ] - 1s 7ms/step - loss: 5.6868 - mean_absolute_e
rror: 1.2079 - val_loss: 8.5948 - val_mean_absolute_error: 0.7463

Epoch 5/20

66/66 | ] - Bs 6ms/step - loss: 5.4392 - mean_absolute_e
rror: 1.1811 - val_loss: 0.5684 - val_mean_absolute_error: 0.7301

Epoch 6/20

66/66 [ ] - Bs éms/step - loss: 5.2012 - mean_absolute_e
rror: 1,1537 - val_loss: 0.5408 - val_mean_absolute_error: 0.7120

Figure 14. Performance of the Federated Learning Model on the
Edge Devices

Algorithm: The R edge devices are indexed by r S is
the batch size, is the learning rate and Ep is the number
of epochs on the edge device as in Fig 14.

Server executes this algorithm in the experiment :
1. Initialize WO
2. for each iteration t = 1,2,3,... do
max < max (C - R, 1)
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St « (set of max edge devices)
for each edge device in n St do

wfﬁl),UpdateEdge(r, wy) (1)
R
ror
w, —w 2
(t+1),z PG ©))

r=1
UpdateEdge(r,w) : // Execute at edge device r
3. S « (split into sets with size S)
4. for each edge epoch k from 1 to Ep do
for set s S do

w,w — Viw;b) 3)

5. return to central cloud
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Figure 15. Three hours of inputs given, and a single hour of
forecast

As a test, we gave 3 hours of input data and tried to
predict 1 hour in the future as shown in Fig 15. This method
yielded fairly reasonable predictions for the short-term.
Linear and LSTM models were accurate in the preliminary
tests.

Split Federation for Data Privacy - Model file trans-
fer:The model was saved in the HDF5 format. The model
files are synchronized to the cloud server using rsync after
every training process as in Fig.16. Then for incremental
modeling, it is transferred back to another edge device. This
keeps the data only at the edge, and allows for incremental
modeling at the edge thereby federating the learning across
the IIoT network edge. tf.keras was used to build and to
train the models using TensorFlow at the edge.

The training checkpoints can be saved as depicted in
Fig.17. In case the training at the edge is interrupted, the
TensorFlow Keras callback ModelCheckpoint can continu-
ously save the training model while training the model, and
also at the end of the training.

This Naive Bayesian Classifier is used for quick learn-

training_1 training_2 split_model.h5

Figure 16. Trained model at the edge - HDF5 format

Figure 17. Training checkpoints that can resume on interruption

ing. As long as B definitely occurs, then the probability of
A occurring is denoted by p(A/B) :

p(B|A)p(A)
2q P(BIA = a)p(A = a)

p(AlB) = “

(IGNB) Incremental Gaussian Naive Bayes Classifier,
considers the Naive Bayes equation and can be used to
calculate the mean deviation incrementally, as opposed to
logging all sensor data for the data-distribution :

p(COTL p(x'|Cy)

P(Cilx) = )

&)

_ ("—Hk)z

(©6)

=y|C,) =
plx =vICy) \/2”0%6

The Bayes method can be used by slicing the sensor
data-sets or by considering their distributions in the data-
set. Deviations from the mean are considered during slicing
and resampling sensor data.

We can see that using simple Bayesian classification at
the edge device running a power-efficient SBC can offer
reasonable analytics and forecasting abilities at the edge.
The aggregated model so created, can be used on different
similar locations, to be able to forecast and take decisions
related to preventive maintenance at different shop floors.
Data remains local to each shop floor and only the learning
model migrates around, ensuring privacy.

We have demonstrated a practical and simple implemen-
tation that is quick to get off the ground, based on open
source technologies only. This approach ensures that it is
easy to kick-start FL in IIoT in an industrial setting with a
quick turn-around time. This approach emphasizes on being
able to get reasonable results with least resources and with
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minimum power consumption at the edge, though resource-
heavy processes are running on the edge devices in real-
time.

Details of the implementation :

One layer refers to the architecture of a Recurrent Neural
Network (RNN). An RNN typically consists of multiple
layers, but in this case, we’re only using one layer. Each
layer in an RNN processes information sequentially, taking
into account the current input as well as the information
it has learned from previous inputs. We used SimpleRNN:
This is a type of RNN architecture that’s relatively straight-
forward compared to more complex variants like LSTM
(Long Short-Term Memory) or GRU (Gated Recurrent
Unit). SimpleRNN processes sequential data by taking the
current input and the previous time step’s output to generate
the current output. ReLU (Rectified Linear Unit): This is the
activation function used in the SimpleRNN layer. ReLU is
defined as f(x)=max(0,x). It’s a simple non-linear activation
function that outputs the input directly if it’s positive, and
zero otherwise. ReLU has become very popular in neural
networks due to its simplicity and effectiveness in prevent-
ing the vanishing gradient problem. Putting it all together, a
“one layer SimpleRNN with ReLU” architecture means we
have a recurrent neural network with a single layer that uses
the SimpleRNN architecture for processing sequential data,
and the Rectified Linear Unit (ReLU) activation function to
introduce non-linearity to the network.

In this setup, we’re utilizing a single layer within a
Recurrent Neural Network (RNN), specifically the Sim-
pleRNN variant. Unlike more intricate RNN types, like
LSTM or GRU, SimpleRNN operates with a straightforward
mechanism, processing sequential data by considering both
the current input and the output from the previous time
step. Within this layer, we apply the Rectified Linear Unit
(ReLU) activation function. ReLU is a widely used non-
linear function in neural networks. It essentially outputs the
input directly if it’s positive, otherwise, it outputs zero. This
choice of activation function helps address issues like the
vanishing gradient problem, making it a popular choice for
neural network architectures.

In split learning, the model is divided into two parts: the
client part and the server part. The client part resides on
factory floor, and the server part resides on a central server.
This split allows the sensitive data to remain on the client
side, ensuring privacy. In model collaboration the client
part processes the local data and generates a compressed
representation. This compressed representation is then sent
to the server part. In aggregation, the server part receives
the compressed representations from multiple clients. It
aggregates these representations and updates the global
model accordingly. This update process typically involves
techniques like model averaging or gradient aggregation.
For deployment when the global model is updated, it is sent
back to the clients. The updated model can then be deployed

on the client devices for further local training or inference.
In federated learning, split learning provides an additional
layer of privacy by ensuring that raw data never leaves
the client devices. Only the compressed representations
are exchanged between the clients and the central server,
reducing the risk of exposing sensitive information.

Our method touches on making the setup scalable using
readily available parts from the market. Cheap Small Board
Computers make the federation process very economical at
scale.

Analysis methodology and Federation :

def split_sequence(sequence, n_steps_in,
n_steps_out):
X, y = list(), list()
for i in range(len(sequence)):
find the end of this pattern
end ix =1+ n_steps in
out end ix =end ix + n_steps_out
check if we are beyond the sequence
if out end ix ¢ len(sequence):
break
gather input and output parts of the pattern
seq_ X, seq_y = sequence[izend _ix], se-

quence[end ix:out end ix]
X.append(seq_ x)

y.append(seq_y)
return np.array(X), np.array(y)

Prediction :

model.add(SimpleRNN(256,
input_shape=(n_steps_in, n_ features)))
model.add(Dense(n__steps _out))
model.compile(optimizer="adam’,
metrics=[r2__metric])

activation="relu’,

loss="mse’,

The accuracy in the predictions were found to be within
a variance of 8% of the actually observed values, over a
period of 3 days. The comparision of actual and predicted
voltages after training the model at a specific location
is shown in the comparision table below. This is used
for predicting the times when machines could fail due to
operating at over and under voltage conditions. The times
avoidable to run a machine whenever the voltage drops
below a specific treshold or raises above a threshold, the
delicate machinery could be stopped from being deployed
at the factory floor.

4. RESULTS AND DISCUSSIONS

In the course of our experiment of the split learning FL
process, the models we created at the edge were transferred
to the centre and were incrementally trained after being
transferred back to another edge device. Modeling happened
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Table I: Comparison with earlier research

Year Reference IIoT at Edge ML at edge power efficiency at edge
2020 7 YES NO NO
2021 8 YES YES NO
2022 1 YES YES NO
2023  Proposed work YES YES YES

at the edge and the results got transferred again to the
central server without transferring the actual data. The
aggregated model was formed in the central or the cloud
server. The computations were performed on the Raspberry
Pi 4 with lower computational power than the central server
or the cloud server for an industrial setting. FL. models were
aggregated on the central server without any data being
transferred.

Results confirm that the trained models of the various
different shop floors across geographies can be aggregated
with success, at the cloud. Privacy is maintained at all times.
Once the model from the central server was trained, we
were able to forecast voltage fluctuations at each site fairly
reasonably.

Table II. Results: Actual Voltage and Predicted Voltage

Time Actual Predicted
Voltage Voltage
2023-01-28T17:55:40Z 250 250.6
2023-01-28T17:56:00Z 250 250.4
2023-01-28T17:56:20Z 250.5 250.6
2023-01-28T17:56:40Z 250.5 250.6
2023-01-28T17:57:00Z 251 251.3
2023-01-28T17:57:20Z 250.5 251
2023-01-28T17:57:40Z 250.5 250.6
2023-01-28T17:58:00Z 251 251.3
2023-01-28T17:58:20Z 250.5 251
2023-01-28T17:58:40Z 251 251.6
2023-01-28T17:59:00Z 251 251.6
2023-01-28T17:59:20Z 251 251.6
2023-01-28T17:59:40Z 251.5 252
2023-01-28T18:00:00Z 251 251.3
2023-01-28T18:00:20Z 251.5 251.9
2023-01-28T18:00:40Z 252.5 252.6
2023-01-28T18:01:00Z 253 253.1
2023-01-28T18:01:20Z 252.5 252.8
2023-01-28T18:01:40Z 252.5 252.8
2023-01-28T18:02:00Z 251.5 252
2023-01-28T18:02:20Z 252 252.1
2023-01-28T18:02:40Z 252 252.1
2023-01-28T18:03:00Z 252 252.1
2023-01-28T18:03:20Z 252 252.6
2023-01-28T18:03:40Z 252 252.6
2023-01-28T18:04:00Z 252 252.5
2023-01-28T18:04:20Z 252 252.2
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Figure 18. Forecast — Yellow crosses

Based on the forecast as shown in Fig.19, simple flows
were designed to give recommendations on the best times
to run sensitive machinery without compromising on safety
and accuracy. FL algorithms such as LSTM was proven to
establish that such IloT frameworks can be deployed in an
enterprise, with higher privacy and scalability.
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Figure 19. Federated Learning models sent back to the central
server

The rsync of the model files combined with the use of
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power efficient SBCs was experimented with, and eventu-
ally was found to be a unique attempt at learning at the edge.
The migrating of the model files between edge devices for
incremental learning, was an approach different from that
used earlier by other researchers. The use of cron jobs to
sync files distributed the learning model among the edge
devices modeling the same sensor data at different locations,
without needing to send data across to headquarters. This
approach can be viewed as an alternative where edge
resources needs to be saved for more important processes.
Failure prediction and accuracy :

The accuracy in the predictions were found to be within
a variance of 8% of the actually observed values, over a
period of 3 days. The comparision of actual and predicted
voltages after training the model at a specific location is
shown in the comparision table II below. This is used
for predicting the times when machines could fail due to
operating at over and under voltage conditions. The times
avoidable to run a machine whenever the voltage drops
below a specific treshold or raises above a threshold, the
delicate machinery could be stopped from being deployed
at the factory floor.

A few methods we studied and based our current exper-
iment on, are summarized in the table I :

5. ConcLusions AND FuTuRE WoRK

The Federated Learning concept (Fig.17) is best suited
for situations where sensor data privacy is important. Split
Learning can be implemented for such scenarios. This
study has shown how such a setup can be conceived and
implemented across a wide geography. The recent improve-
ments in SBC power has enabled intensive processes like
TensorFlow to be able to run on the edge device itself.
In edge devices where TensorFlow Federated cannot be
run, one can federate learning through the split learning
paradigm. This decreases communication traffic between
the headquarters and results in lower computational load
on the cloud server at the cental location. It also reduced
bandwidth requirements between the edge and the cloud.
Shared ML models can be created and incremental learning
can take place with the models aggregated with other
training elements. FL is best for privacy where local data
is not transferred to the cloud. This can be integrated into
ITIoT architectures in the industry as part of Industry 4.0 and
5.0 initiatives to utilize best practices in efficient edge-cloud
implementation for the modern enterprise.

This method of federating is dependent on the energy
efficient 28nm FinFet based CPU driven SBCs being avail-
able in the market. Currently, due to the chip shortage in
early 2023, at the time of conducting this experiment, we
found that these SBCs are in short supply. There is a wait
list over 24 months from original equipment manufacturers
and it is found that in the alternative local market, there is
an inconsistent supply and even when available, the SBCs
are marked up to almost double the actual suggested price.
We expect the supply to be streamlined by the end of

the year (2023). The future holds tremendous potential for
federating at the edge in IIoT and it all depends on the
supply chain stabilizing in the post-pandemic era. Once
the fab facilities get their act together and assure a regular
supply at reasonable rates, we are sure that more research
in IIoT will be accomplished with different techniques and
different needs. The adoption of energy-saving technolo-
gies creates opportunities for job growth and economic
development in the renewable energy and energy efficiency
sectors. Industries involved in manufacturing, installing,
and maintaining energy-efficient machinery require skilled
workers, leading to job creation and investment in training
and education programs. Additionally, energy savings free
up capital for businesses to invest in innovation, expansion,
and job creation, contributing to overall economic growth.
By reducing energy consumption, running machinery with
energy-saving technologies helps mitigate environmental
impacts associated with energy production, such as air and
water pollution, habitat destruction, and climate change.
This contributes to improved public health and environmen-
tal quality, benefiting communities and ecosystems locally
and globally. Energy-saving machinery helps conserve nat-
ural resources, such as fossil fuels and water, by reducing
the demand for energy and raw materials used in man-
ufacturing processes. This promotes sustainable resource
management and reduces the environmental footprint of
industrial activities, preserving natural habitats and ecosys-
tems for future generations. Energy-saving technologies can
improve energy access and affordability for underserved
communities and developing regions by reducing energy
costs and expanding access to clean and reliable energy
sources. This promotes social equity and reduces energy
poverty by ensuring that all individuals and communities
have access to essential energy services for heating, lighting,
cooking, and communication.

Authors’ contributions: Sachin Bhoite,
Chandrashekhar H. Patil, and Harshali Patil have equally
contributed.
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