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Abstract: The agricultural sector plays a pivotal role in ensuring global food security, particularly in light of significant population
growth. The demand for food is increasing substantially, while crop production may not sufficiently meet these rising needs. Water
scarcity is one of the main problems that poses a significant challenge to the agriculture sector, exacerbated by inefficiencies in
traditional irrigation methods. Accurate prediction of plant water requirements is essential to address this issue. This paper proposes
advanced machine learning (ML) and deep learning (DL) models to accurately predict the daily water amount (quantity) needs of
greenhouse plants using various air and soil data parameters. Various data preprocessing techniques were applied to prepare the data
for the proposed models. In addition, due to the different nature of the proposed models, two different data splitting methods were used
to split data into inputs and outputs (Simple data preparation for the ML models and time series data preparation for the time series DL
models).Results indicate that the Multi-Layer Perceptron (MLP) model consistently outperformed other models, demonstrating superior
stability and efficiency across different data optimization phases. Additionally, both ML and Long-Short Term Memory (LSTM) models
exhibited strong performance in different data optimization scenarios. Robustness was evaluated through parameter sensitivity analysis,
which revealed that ML models were generally more robust than DL models. This robustness is attributed to the limited number of
parameters in ML models, which enhances their reliability compared to the more complex DL models. This study ensures the potential of
the proposed models to optimize the irrigation practices, thereby addressing water scarcity issues and improving agricultural productivity.

Keywords: Precision irrigation, Water amount prediction, Data-based optimization, Hyper-parameters tuning, DL time series,
Sensitivity analysis

1. INTRODUCTION

The global population reached 8 billion in November
2022 and is projected to grow to 9 billion by 2050 [1].
This has led to challenges, especially those related to food
supply and freshwater resources, as water has become a
critical resource that requires precise management, specif-
ically in agriculture [2]. According to a report by the
Food and Agriculture Organization (FAO) over the past
century, global water use has increased at a rate that is
more than twice as fast as population growth. In arid
areas, population growth and economic development are
putting unprecedented pressure on renewable but limited
water supplies. Two-thirds of the world’s population may
be living in ” stressful” circumstances by 2025, with 1.8
billion people predicted to reside in areas with “absolute”
water shortage (Defined as less than 500m® of water per
person annually) and between 500 and 1000m® of water
per person annually [3].

The agricultural sector significantly contributes to water
scarcity. According to an FAO report, 70% of the available
freshwater resources are used for agriculture, and 60% of
this water is wasted due to inefficient irrigation techniques
[4]. These issues call for an innovative solution to ratio-
nalise water resource usage.

Numerous solutions have been developed to manage
the irrigation water usage. Some utilise the evapotran-
spiration value as the primary indicator of plant water
needs, while others define a soil moisture threshold value
to determines when to initiate or stop irrigation based on
the field measurement of soil moisture. Recent solutions
have incorporated Al techniques. Yet comprehensive global
monitoring of environmental changes affecting plant growth
remains limited.

Many proposed solutions used the evapotranspiration
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[5], [6], [7], [8], [9] value as information that describes
the plant water needs. Evapotranspiration (ET) refers to
the water loss to the atmosphere through two processes:
evaporation and transpiration. Evaporation involves water
loss from open bodies of water, such as lakes, reservoirs,
wetlands, bare soil, and snow cover. Transpiration, on the
other hand, is the water loss from the surfaces of living
plants [10]. The ET-based solutions use different empirical
models to obtain the ET value and various parameters such
as rainfall, wind speed, solar radiation, and other weather
and air parameters [11]. The main drawback of these models
is that they need exact weather data to give an accurate ET
value, which can be difficult to obtain [12], [13].

Other researches have focused on defining a threshold
that controls the irrigation [14], [15], [16], [17], typically
using soil moisture levels. When the current soil moisture
reaches the predefined threshold, the water pump activates
to irrigate the plants. If the soil moisture is above the
threshold, the water pump remains off. The choice of soil
moisture thresholds can be a challenging point because
if the threshold is set too high, the result will be over-
irrigation, while setting it too low, will result in under-
irrigation and thus production losses [18].

In recent years, researchers have focused on using arti-
ficial intelligence (AI) and taking advantage of its ability to
solve complex problems, specifically focusing on predicting
the precise amount of water needed for irrigation [19], [20],
[21], [22], [23], [24], [25]. While AI presents promising
solutions for smart irrigation, most proposed solutions focus
on predicting irrigation related values such as soil moisture
and ET using a limited number of parameters.

Despite the various solutions proposed and extensive re-
search aimed at optimizing the irrigation process and reduc-
ing water wastage, there is still a need for a comprehensive
solution capable of addressing the significant limitations of
previous works. Such a solution should accurately predict
plant water needs without any wastage.

In this study, we aim to address the limitations of
previous research by introducing advanced ML/DL models
capable of accurately predicting the precise daily water
quantity required by plants. These predictions utilize a
diverse set of air and soil data parameters, enhancing the
models’ precision. Additionally, we conducted a compre-
hensive analysis to assess the impact of data optimization on
the performance of these ML/DL models, evaluating each
model’s response to different data processing techniques.
Furthermore, we performed a sensitivity analysis to evaluate
the robustness of each model, providing insights into their
stability under various conditions.

The contributions of this paper are outlined as follows:

e Direct prediction of daily irrigation water amount,
utilizing various plant environmental conditions
throughout plant evolution, ranging from air parame-

ters to soil parameters.

e Sensitivity analysis conducted on the proposed mod-
els to evaluate their efficiency and robustness.

The remaining of this paper is structured as follows:
Section 2 provides a detailed data description, materials
and methodology used in this study. In Section 3, we
present the results of our study, followed by a discussion
of their implications in Section 4. Finally, Section 5 offers
concluding remarks and suggestions for future research
directions.

2. MATERIALS AND METHODS

The main goal of this work is to accurately predict the
daily irrigation water amount influenced by plant environ-
mental factors using a specified model M.

Figure 1 represents the global architecture of the pro-
posed system, which composed mainly of two stages:

o Training stage: This stage is conducted offline,
where we train our model using specific agricultural
data that affect the daily water amount, following
necessary data preprocessing and preparation steps.
The data used are historical records from a successful
plant-growing experiment with optimal irrigation de-
cisions. The training process is repeated with different
configurations and during various data optimization
tasks until the lowest error score is achieved.

o Prediction stage: Once the model is ready, it can
be applied in real-time environment to predict the
accurate water amount using current daily data values.
After a specified period, the real-time data records
will be collected and added to the historical dataset
to retrain the model, thus improving its performance
through data augmentation.

A. Data Description

Collecting data regarding the plant environment is cru-
cial for estimating the quantity of irrigation water needed
because this data is considered the main factor affecting
the irrigation process. To achieve this, we utilized data
from the first edition of the Autonomous Greenhouse Chal-
lenge (AGC) [26]. The AGC is a competition held in the
Netherlands, involving six teams (five competing teams and
one experts team) tasked with managing the growth of
cucumber plants within a greenhouse (GH). Each team has
its own GH with various sensors. Their job is to design and
develop machine learning (ML)/deep learning (DL) models
that make accurate decisions regarding the plants * growing
conditions (Irrigation/ ventilation/ heating/ CO, dosage ...
etc.).

The AGC dataset comprises five collections, each cor-
responding to a different team. Each collection contains
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Figure 1. Proposed system process

six datasets that detail the team’s management of the plant
growth environment within the greenhouse.

e Crop Management
o Greenhouse Climate
e VIP

e Irrigation

e Production

e Resources Calculation

Because the irrigation process can be affected by dif-

ferent plant air environmental changes and soil data [27],
we selected the GH Climate and Irrigation datasets from
the winning team as the essential data needed to predict the
irrigation water amount.

Table I describes the used data parameters. The GH
Climate dataset includes 33133 rows of 115 days of growth,
with each row representing data recorded every 5 minutes.
The irrigation dataset consists of 115 rows, each corre-
sponding to daily irrigation information for the respective
day. In the AGC competition, the “drain” parameter was
used to determine net water usage, but it is not relevant for
this study, so it has been excluded.

https://journal.uob.edu.bh
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TABLE I. Selected Datasets Parameters Description

Dataset Feature Description Unit

Tair GH air temperature °C

RHair GH relative air humidity %

AssimLight GH artificial light %
COjair GH air CO; concentration ppm
HumDef GH Humidity deficit g/m?

GH Climate ~ Ventwind Ventilation wind speed %

PipeLow Rail pipe heating temperature °C

on the floor
. Pipe heating temperature o

PipeGrow pon the c%op hgight c

pH Drain  Daily average of drain water PH [-]
. EC Drain  Daily average of drain water EC  dS/m
Irrigation drain Daily drain water I/m?
water Daily irrigation water amount I/m?

B. Data Preprocessing
1) Data Cleaning

Data cleaning is a technique used to improve the data
quality by detecting and removing errors, and inconsistent
and false data [28]. In this work we have applied two
different data cleaning techniques:

e Missing values: Table II shows the number of miss-
ing values of the "GH Climate” and “Trrigation”
datasets parameters respectively. For the "GH Cli-
mate” dataset, we found out that there are 142 missing
values for each column —parameter— of a total of
331334 values, which is less than 01% of the total
data. For the “Irrigation” dataset, the only missing
value was for the water parameter on day 64, repre-
senting 0.87% of the total values (115 rows).

Since both datasets contain less than 01% missing
values, we chose to disregard these values during the
data reconstruction phase.

TABLE II. Missing values for each parameter

Dataset Feature Nb. Missing Values
Tair 142
RHair 143
AssimLight 142
CO2air 142
GH Climate HumDef 142
Ventwind 142
AssimLight 142
PipeLow 142
PipeGrow 142
water 1
Irrigation EC_Drain 0
pH_Drain 0

e Handle outliers: An outlier is a data point that
deviates significantly from the other data points in a

dataset [29], it’s existence in the data may affect the
model’s performance. For that detecting and handling
the outliers is a mandatory step to do. To detect the
outliers, we have used the z-score technique which
is a common method for detecting the outliers. The
z-score is simply a test that measures the divergence
of a different experimental observation from the most
probable result, the mean [30].

Table III shows the number of rows containing
outliers accompanying their percentage of the total
data. Because the detected outliers carry real data
(Not missing values or out of range), the techniques
of modifying the outliers may affect the results of
our models. So, we decided to study the impact of
deleting the outliers on the model’s performance by
analysing the results with the original data and with-
out the existence of outliers. Thus, we have chosen
the outliers detected when Threshold = 3 because it
contains only 14% of total data (Too small 03% when
threshold =4 / Too many when threshold=2).

TABLE III. Detected Outliers using z-score test

Threshold Nb. Detected Outliers Percentage
02 37 33%
03 16 14%
04 03 03%
05 01 0.87%

2) Data Reconstruction

Because of the difference in the time intervals between
the parameters of the two used datasets, we have recon-
structed the used datasets by combining them into a new
dataset that contains a unified time interval (Daily interval)
by calculating the daily average of the GH Climate (initially
recorded at minute intervals) dataset parameters, except for

https://journal.uob.edu.bh
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the “AssimLight” parameter, for which we calculated its
total daily working time (in minutes).

The reason for calculating the daily working time of the
“AssimLight” is because this parameter is categorical in the
original dataset (GH Climate dataset), which means that the
value of this parameter has only two values: 0%(OFF) or
100%(ON).

Algorithm 1 describes the process of data reconstruction
that we have used. The new dataset Ndata is the form of a
matrix of n columns and m rows(lines), where n corresponds
to the number of the parameters used, and m corresponds
to the number of samples used which are the growing days.
Also, when we make the sum of values, we ignore the
missing values that occurred in the original data.

Algorithm 1 Data reconstruction

Require: GH Climate
Require: Irrigation
Remove unwanted parameters
GH _Climate <« GH _Climate — {’time__index”}
Irrigation < Irrigation — {"drain”}
Ndata « {0}
for k=1;i< N do
for i=0;i<114 do
sum < 0
for j=1; j <288 do
current < GH _Climate[K][i * 288 + j]
if (k is "AssimLight” and current=100) then
sum «— sum+ 5
end if
if (k is not "AssimLight”) then
sum < sum + current
end if
end for
if (k is "AssimLight) then
Ndatalk][i] < sum
else
avg « 3
Ndatalk][i] « avg
end if
end for
Ndatalk][i] « avg
end for
return (Ndata)

N.B: the value 288" mentioned in the algorithm rep-
resents the number of rows that form a complete day of
data.

3) Data Normalization
e Data scaling: Feature scaling is the process of stan-
dardizing data so that the features have similar mag-
nitudes, units, and ranges. This is essential when the
data varies widely, as unscaled data can cause some
machine learning algorithms to underperform by not

properly accounting for the variance in feature set
data [31].
Due to the various type of features used with the
different ranges (%, °C, [1-10] for PH,...etc), scaling
the data is an essential step before training the models
in order to prevent any model’s under-perform caused
by the difference in the data ranges. Thus, we have
used the MinMax Scaler with a feature range of [0-1]
to scale our data.

X = X; — mm().(,) o

Y omax(X;) — min(X;)

Where X! corresponds to the scaled value, min(X;)
and max(X;) are the minimum and maximum values
of the parameter i.

Stationary data: Stationarity means that a stochastic
feature does not change even if time changes [32].
Many statistical tests can be used to detect the data
stationarity status. One of the most used tests is The
augmented Dickey-Fuller (ADF) test. The ADF is
the extended version of the simple Dickey-Fuller test,
which suppose at first that the data is not stationary
(null hypothesis), and then the ADF calculates the p-
value. If this value is less than the significant level
(usually 0.5), the ADF reject the null hypothesis and
accepts the alternative. The alternative supposes that
the time series data is stationary [33]. After passing
the ADF test to all the parameters, we find out that:
o "water”, "Pipe Grow Temp”, “Daily Pipe
Low”, ”Ventilation wind”, "GH Temp” and
“Assim Light” are stationary data.
o The remaining parameters are non-stationary
data.

The excising of non-stationarity parameters means
that these parameters are related to the time factor.
This may invoke a problem with the models’ per-
formance. To avoid any possible problem, we need
to change this data into stationary data and observe
its impact on the models’ behaviour. ”’Differencing
data” is a common method that changes the non-
stationary data into stationary using the following
equation:

X =X, — X )

Where: X;: Non-stationary data at time i, X;_;: Non-
stationary data at time i — 1, and X]: Stationary data
at time i. Differencing the data can help stabilize
the mean of a time series by removing changes in
the series’ level. This process effectively reduces or
eliminates trends and seasonality [34].

After one order of data differencing, all the used
parameters have become stationary. This step is used
to analyze the impact of the stationary data on the
model’s performance.

https://journal.uob.edu.bh
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C. Data Preparation
This section describes the different methods used for
splitting the data into inputs and outputs.

1) Simple Data Preparation

Because the used ML models and MLP model cannot
deal with the data as a sequence, we dealt with this data
as a discrete problem, meaning that to predict the daily
irrigation at day i we gave the model the inputs, which are
the environmental change of the plant at the day i with the
day index as information that describe the current position
of the sequence.

Algorithm 2 describes the process of the simple data
preparation.

Algorithm 2 Simple Data Preparation

Require: data

Require: day index
Y « data|”water”] > Output
X « data — {data[”’water”]} » All columns except water
column (output)
return (X.,Y)

2) Time Series Data Preparation

Since the used data includes timestamps, and given the
utilization of certain time series Deep Learning DL models
in this study, we have introduced a second approach for
data preparation for the time series models. This method
involves employing the window slide concept to segment
the data.

Algorithm 3 outlines the data preparation process utiliz-
ing the window size parameter. In this context, the output
(water amount) on the day i is not only dependent on the
inputs (plant’s environment parameters) of the day (i), but
also on the inputs ranging from i — windowsize to the day
i.

Algorithm 3 Window Sliding Data Preparation

Require: data
Require: window _size
Y « data|”water”]
Z « data — {data|”water”]}
X « {0}
for i = 1to len(data) — window_size do
T « {0}
for j=1i; j <i+ window _size do
T T ULZ[il}
end for
X « XU{T)
end for
return (X,Y)

D. Proposed Models

In this work, we developed various models to predict
the required irrigation water amount that varying from the

ML models to the DL models ending with the advanced
time series Models:

e Ada Boost regressor (ABR)

e Extra Tree regressor (ETR)

e Gradient Boost regressor (GBR)

e Multi-layer perceptron (MLP)

e Recurrent Neural Network (RNN)
o Long Short Term Memory (LSTM)

E. Evaluation Metrics

In this work, the performance of the suggested models
was assessed using two metrics:

Y 1Y =Y
Mean Absolute Error ( MAE) = ———— 3)
T (Yi=Y))?
Root Mean S quared Error (RMSE) = \| ——
n
4)

Where Y; corresponds to water amount needs for plant at
the day i, and Y; represents the predicted output (water
amount).

FE. Hyper-parameter Tuning

This section aims to identify the optimal hyper-
parameter sets for each model to achieve the best results. We
compared these results using MAE (The hyper-parameter
that gives the minimum MAE will be selected).

1) Grid-Search CV

The grid search is an exhaustive search based on defined
subset of the hyper-parameter space [35]. Table IV repre-
sents the configuration of the hyper-parameter tuning and
the range of possible values of the proposed ML models
using the Grid-Search CV method.

TABLE IV. ML hyper-parameters’ configuration ranges

Model Parameter Interval
ABR
GBR n_estimator  [1-100]

ETR

2) Bayesian Optimization

Because the DL models contain many hyperparameters
that need to tune to obtain the best results, and because
the Grid-Search CV method will be much more expensive,
we chose to use the Bayesian optimization to find the best
hyperparameters configuration that achieves the best results.

https://journal.uob.edu.bh
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Bayesian optimization is an approach that optimizes
objective functions that take a long time to evaluate. It
works well when optimizing continuous domains with fewer
than 20 dimensions [36].

Table V represents the configuration for the DL models
using the Bayesian optimization. Because the Bayesian
optimization method search for the max value possible,
and we need to find the lowest possible error rate, we
have converted the target value (MAE) into a negative
value. Therefore, when the Bayesian method finds the
max negative value, it will be the lowest MAE value. In
addition, we have fixed the "Nb Iterations” parameter at
100 iterations.

3. ResuLrs
A. Models’ Performance Results

This section presents the results obtained during various
data optimization phases to evaluate the performance of
the proposed models. The goal of this step is to identify
the most accurate model with the smallest error margin
and stable performance across different data optimization
treatments, ensuring consistent and reliable performance.

Firstly, we have analyzed the results before applying
any data optimization. Then, we have studied the impact of
detecting the outliers on the models’ behavior and results.
Also, because the used data is time-stamped where the
irrigation process is applied during all of the growing days
and each water quantity could affect , we have studied the
impact of stationary/non-stationary data on the proposed
models (especially RNN and LSTM). Lastly, both of these
optimization techniques have been applied simultaneously
to analyze their impact on the models’ performance when
used together.

1) Obtained Result without Data Optimization

Figure 2 shows the obtained results of MAE and RMSE
of the different used models without any data optimization
where we can see that the MLP and LSTM models gave
the lowest MAE and RMSE values (0.038 and 0.047
respectively for MAE and 0.048 and 0.058 respectively for
RMSE).

On the other hand, the RNN model gave the highest
MAE and RMSE scores compared to the other models.
Also, the RMS E — MAE value (the gap between MAE and
RMSE) is the highest, which means that: there is a possible
massive error that may occur in this model.

2) Comparison of Results after Removing Outliers

Because outliers are one of the main factors that may
affect the performance of the models, especially the DL
models [37], we decided to study the impact of outliers on
the models performance.

Figure 3 shows the obtained results of the ML/DL
models after removing the outliers, and Figure 4 shows the
difference between these results with the initial results.

0.08 . MAE
RMSE

0.07 .

0.06

0.02

0.01

0.00

GBR MLP RNN LSTM

Models

Figure 2. Obtained results without data optimization

Removing the outliers made the ML models record
the worst scores and even worst than the initial results,
especially the ABR and ETR models. On the other hand, the
DL models gave better results compared to the ML models.
Although the LSTM was the best model that gave the lowest
MAE and RMSE values among all the models, this did not
make any improvement compared to the initial results. For
the RNN, we got a decent MAE value. However, the RMSE
value was too big (Huge gap between MAE and RMSE),
which can be explained by a possible overfitting problem
that happened to the RNN model caused by the lack of data
by removing the outliers (Data lost).

Although there were differences in the obtained results
among the models, with some yielding better results than
others, the overall performance of the proposed models
significantly decreased after outliers were removed. This
decline can likely be attributed to the loss of significant
data volume due to the removal of outliers. It is well-known
that ML/DL models are highly sensitive to data quantity,
and the reduction in data volume negatively impacted their
performance.

3) Comparison of Results after Differencing Data

Figures 5 and 6 show the results obtained after differ-
encing the data.

These results show a significant improvement concern-
ing all the ML models, especially the ETR method, which
gave the lowest results among all the models (0.03 for MAE
and 0.03 for RMSE). For the DL model, the RNN model
was the only model that took the benefit of differencing the
data where it recorded very low MAE and RMSE values
compared to the initial results.

https://journal.uob.edu.bh
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TABLE V. DL hyper-parameters’ configuration ranges

Layer Parameter Range

Nb Layers [1-10]

Fully Connected Nb Neurons [1-500]
Dropout [0.1-0.8]

Nb Layers [1-10]

Nb Neurons [1-500]
RNN/LSTM Dropout [0.1-0.8]

Sequence _length/
Window _size [2-10]
adam, rmsprop, sgd,
Optimization function [adadelta, adagard, adamax,]

nadam

Batch_size [1-100]

Epochs [1-500]

General relu, tanh, sigmoid,
Layers’ Activation function [ softmax, softplus, elu, |
selu
;g . 0.05
g ’ 0.04

0.04

0.02

0.00

ABR ETR GBR

Models

MLP RNN LSTM

Figure 3. Obtained results after removing outliers.

4) Comparison of Results after Applying all Data-based
Optimization
Figures 7 and 8 show the results after applying all
Data-based optimization. The results show that applying
both optimization methods did not help at all to improve
the model’s results. Instead, it gave a much worse score

ETR
Models

(a) Comparison of MAE values

RMSE Value before and after removing outilers

ABR ETR

Models

(b) Comparison of RMSE values

compared to the initial results.

N.B: The differencing method changes the data values,
which could affect the possible outliers. For that, we applied
the z-test initially before removing the data.

Figure 4. Comparison of results before and after removing the
outliers

B. Comparison of Models’ Robustness

Finding a model that minimizes error is necessary
but not sufficient for deployment. Evaluating a model’s
robustness is equally crucial. A models’ robustness refers

https://journal.uob.edu.bh
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. MAE

W RMSE
0.06

0.05

0.02

0.00
ABR ETR GBR MLP RNN LSTM

Models

Figure 5. Obtained results after differencing data

to the ability of a given model to maintain its performance
in different conditions [38]. Sensitivity analysis can be
used to rank the influence of different hyper-parameters
on the model’s performance [39], which can help identify
the model’s robustness by analyzing the distribution of the
results during the hyper-parameters tuning.

Figure 9 and Table VI illustrate the result of sensitivity
analysis of different hyper-parameters configurations, allow-
ing us to track each model’s performance and gain insights
into their robustness.

For the ML models, we see that both the ABR and ETR
models gave the lowest standard deviation values (Around
0.001), which means that the obtained results of these two
models during the different hyperparameters configuration
are always close to the mean. This can be explained by
the fact that these models have only one parameter that
has been tuned, so the deviation of the results will not
going to be very wide around the mean. On the other
side, the GBR model was the most ML mode sensitive to
hyperparameters changes with a notable extensive standard
deviation (Around 0.01) compared to ABR and ETR.

For the DL models, the interval of the obtained results
has notably expanded compared to the ML models where
the MLP and RNN gave an MAE and RMSE close to 0.8
in some hyperparameters configurations while the minimum
values obtained are too small in some cases where the MLP
we got MAE=0.038 which is the best result obtained among
all the models, thus has made the standard deviation for
these models too huge compared to the ML models, that
means the results are skewed to either to the left (Close to
the zero) or to the right (Close the max) because the mean >
median in all the DL models that means that these results

MAE Value before and after Defferencing Data

0.065

0.060

0.055

Values

0.050

0.045

0.040

ABR ETR GBR MLP RNN LSTM
Models

(a) Comparison of MAE values

RMSE Value before and after removing outilers

0.080

0.075

0.070

£ 0.065

0.060

0.055

0.050

(b) Comparison of RMSE values

Figure 6. Comparison of results before and after differencing the
data

have a left-skewed where most of the results distributed in
the left of the median.

This massive difference between ML and DL models
in result distributions can be attributed to the variety of
hyperparameters used for DL models versus the single
parameter for ML models. However, since most DL results
are near the best outcomes (close to zero), it suggests that
DL models can still be robust despite their higher variability.

4. DiscussION

Overall, all proposed models performed well in predict-
ing irrigation amount, with noticeable differences among
them. The MLP was the best model, which gave the best
results during all the data optimization phases since the
MLP was the model that gave the lowest MAE (0.038 when
no data-based optimization applied) value with a small
error variation magnitude (Small RMS E—MAE value). The
LSTM model also recorded stable results during almost all
optimization processes (differencing data) with a low MAE
(generally 0.05) and a small RMSE-MAE value. The ML
models also gave decent scores with a not too big RMSE-
MAE value except the GBR model, which was a little bit
worse than the other ML models, where this model recorded
the highest MAE and RMSE scores. On the other hand,
the RNN model gave the highest MAE and RMSE scores.
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TABLE VI. Statistical analysis of the results of the proposed models

Model Metric Min Max Mean Std  Median
ABR MAE 0.056 0.062 0.058 0.001 0.05
RMSE 0.069 0.077 0.072 0.001 0.072
ETR MAE 0.058 0.081 0.07 0.001 0.07
RMSE 0.075 0.102 0.086 0.002 0.086
GBR MAE 0.054 0.086 0.073 0.01 0.076
RMSE 0.066 0.105 0.09 0.013 0.094
MLP MAE 0.038 0.72 0.127 0.131 0.07
RMSE 0.048 0.722 0.14 0.128 0.084
RNN MAE 0.064 0.064 0.21 0.127 0.148
RMSE 0.079 0.717 0.255 0.123 0.2
LSTM MAE 0.047 0.593 0.117 0.102 0.076
RMSE 0.058 0.597 0.13 0.099 0.088
gﬂ.ﬂﬁ »
E 0.04
(a) Comparison of MAE values
’ ABR R G“Models Mp RNN LsTM = TSl I — -

Figure 7. Obtained results after removing outliers + differncing data.

Although the RNN model recorded the highest error score
among the models, its results aren’t too poor because even
if the RNN gave the worst MAE value (0.08 1/m?), it still
could be considered as a small error margin in the irrigation
water amount.

Each data optimization task made a different impact
on the proposed model’s performance. Concerning the task
of removing the outliers, almost all the models recorded
unacceptable reactions to this optimization. This reaction
can be attributed to the substantial loss of data, which had
previously aided these models in achieving better gener-
alization. Regarding the impact on stationary data, almost
all of them exhibited positive responses to this optimization,
yielding noticeably improved results compared to the initial
outcomes. This improvement can be attributed to the time
series nature of the data used in this work.

Values

ABR ETR GBR MLP RNN LSTM
Models

(b) Comparison of RMSE values

Figure 8. Comparison of results before and after applying all the
optimization

The robustness analysis is critical before deploying any
model in real-world situations. The sensitivity analysis of
the proposed models shows that the ML models could be
more robust than the DL models. However, the possibility
of in-time re-training the DL models based on the feedback
could be a high advantage that could cover their weakness
in terms of robustness.
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Figure 9. MAE and RMSE results distributions during the hyper-parameters tuning.

Despite the potential impact of the proposed models,
some limitations should be noted:

The data reconstruction phase calculates the daily
average for each per-minute parameter to match the
daily recorded parameters. This method leads to
losing a huge volume of data by condensing the
total daily recorded data into a single value. Since
DL models are more sensitive to data, this creates
a significant challenge. Dropping these enormous
amounts of data can potentially impact the model’s

accuracy and effectiveness, as it may remove valuable
information within the day.

DL models pose a significant limitation in terms
of robustness, as sensitivity analysis results show a
wider results distribution of the DL models during
the different hyper-parameters configurations.

The proposed ML/DL models were trained on a data
from only one experiment of growing a cucumber
crop. Although the experiment was conducted a team
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that won a growing competition , training the models
solely on this data may bias them towards the team’s
irrigation strategy and could hinder their generaliz-
ability.

Future work may focus on addressing the above-
mentioned limitations.

5. CONCLUSIONS AND FUTURE WORK

This work aimed to address the issue of water wastage in
greenhouse environments by accurately predicting the daily
water amount (quantity) requirements using a variety of DL
and ML models. The models were fed with different set of
input parameters, encompassing both air plant environment
factors (such as air temperature, humidity, heating temper-
ature) and underground parameters (PH and EC). Different
data preprocessing techniques were employed to handle the
corrupt and inaccurate data with specific time series data
preparation applied for LSTM and RNN models.

Results indicate that the MLP model outperformed other
models, demonstrating superior accuracy with consistent
stability throughout all optimization phases. Concerning
robustness, sensitivity analysis revealed the greater robust-
ness of ML models compared to DL models, attributed to
the limited number of hyperparameters employed in ML
models (typically one parameter). Among DL models, the
analysis indicated that the LSTM model exhibited potential
robustness, as evidenced by a lower results distribution
compared to RNN and MLP models.

Despite these significant results, it is essential to note
that losing an extensive amount of data during the data
reconstruction phase, particularly from the "GH climate”
dataset parameters, may compromise the models’ perfor-
mance. These omitted data could potentially contain crucial
information about the dynamic status of the plants through-
out the day.

As a future research, an enhanced data reconstruction
method may be proposed to unify the time interval between
the used parameters without losing significant data. This
could improve accuracy in predicting water amounts and
further contribute to the advancement of sustainable water
management practices in greenhouse environments.

ACKNOWLEDGEMENTS

This work is supported by the Algerian Directorate Gen-
eral for Scientific Research and Technological Development
(DGRSDT) under the National research projects program in
association with the Technical Institute for the Development
of Saharan Agronomy (ITDAS) of Biskra.

REFERENCES

[1] United Nations Department, “World population prospects 2022:
Summary of results,” Tech. Rep. UN DESA/POP/2022/TR/NO. 3,
2022.

(2]

[3]

(4]

(51

(6]

(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

S.  Wanniarachchi and R. Sarukkalige, “A review on
evapotranspiration estimation in agricultural water management:
Past, present, and future,” Hydrology, vol. 9, no. 7, 2022. [Online].
Available: https://www.mdpi.com/2306-5338/9/7/123

P. Steduto, J. M. Faures, J. Hoogeveen, J. Winpenny, and J. Burke,
“Coping with water scarcity: an action framework for agriculture
and food security,” Rome, Tech. Rep., 2012.

K. Chartzoulakis and M. Bertaki, “Sustainable water management
in agriculture under climate change,” Agriculture and Agricultural
Science Procedia, vol. 4, pp. 88-98, 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2210784315000741

M. Dukes, M. Shedd, and S. Davis, “Smart irrigation controllers:
Operation of evapotranspiration-based controllersl,” EDIS, vol.
2009, 04 2009.

S. Davis, M. Dukes, and G. Miller, “Landscape irrigation by
evapotranspiration-based irrigation controllers under dry conditions
in southwest florida,” Agricultural Water Management, vol. 96,
no. 12, pp. 1828-1836, 2009. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0378377409002340

J. TR, N. S. Reddy, and U. D. Acharya, “Modeling daily reference
evapotranspiration from climate variables: Assessment of bagging
and boosting regression approaches,” Water Resources Management,
vol. 37, no. 3, pp. 1013-1032, Feb 2023.

Y. Ma, S. Liu, L. Song, Z. Xu, Y. Liu, T. Xu, and Z. Zhu,
“Estimation of daily evapotranspiration and irrigation water
efficiency at a landsat-like scale for an arid irrigation area using
multi-source remote sensing data,” Remote Sensing of Environment,
vol. 216, pp. 715-734, 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0034425718303523

P. Droogers, W. Immerzeel, and I. Lorite, “Estimating actual
irrigation application by remotely sensed evapotranspiration
observations,” Agricultural Water Management, vol. 97, no. 9, pp.
1351-1359, 2010. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0378377410001149

R. L. Hanson, “Evapotranspiration and Droughts,” https://
geochange.er.usgs.gov/sw/changes/natural/et/, 1991, [Accessed 08-
Jun-2023].

F. Poyen Phd, d. ghosh, and D. kundu, “Review on different
evapotranspiration empirical equations,” International Journal of
Advanced Engineering, Management and Science (IJAEMS), vol. 2,
pp- 17-24, 03 2016.

D. Choudhary, “Methods of evapotranspiration,” https:
//www.researchgate.net/publication/323945435 Methods _of
Evapotranspiration, 03 2018.

A. Mokhtar, N. Al-Ansari, W. El-Ssawy, R. Graf, P. Aghelpour,
H. He, S. M. Hafez, and M. Abuarab, “Prediction of irrigation water
requirements for green beans-based machine learning algorithm
models in arid region,” Water Resources Management, Mar 2023.

T. Boutraa, A. Akhkha, A. Alshuaibi, and R. Atta, “Evaluation of the
effectiveness of an automated irrigation system using wheat crops,”
Agriculture and Biology Journal of North America, vol. 88, pp.
2151-7517, 01 2011.

M. Goodchild, K. Kiihn, A. Burek, M. Jenkins, and A. Dutton, “A
method for precision closed-loop irrigation using a modified pid

https://journal.uob.edu.bh


https://www.mdpi.com/2306-5338/9/7/123
https://www.sciencedirect.com/science/article/pii/S2210784315000741
https://www.sciencedirect.com/science/article/pii/S2210784315000741
https://www.sciencedirect.com/science/article/pii/S0378377409002340
https://www.sciencedirect.com/science/article/pii/S0378377409002340
https://www.sciencedirect.com/science/article/pii/S0034425718303523
https://www.sciencedirect.com/science/article/pii/S0034425718303523
https://www.sciencedirect.com/science/article/pii/S0378377410001149
https://www.sciencedirect.com/science/article/pii/S0378377410001149
https://geochange.er.usgs.gov/sw/changes/natural/et/
https://geochange.er.usgs.gov/sw/changes/natural/et/
https://www.researchgate.net/publication/323945435_Methods_of_Evapotranspiration
https://www.researchgate.net/publication/323945435_Methods_of_Evapotranspiration
https://www.researchgate.net/publication/323945435_Methods_of_Evapotranspiration
https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No.1, 1399-1412 (Sep-24) ‘-

1411

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

control algorithm,” Sensors and Transducers, vol. 188, pp. 61-68,
05 2015.

J. Gutierrez, J. Villa Medina, A. Nieto-Garibay, and M. Porta-
Gandara, “Automated irrigation system using a wireless sensor
network and gprs module,” Instrumentation and Measurement, IEEE
Transactions on, vol. 63, pp. 166-176, 01 2014.

V. V. Borodychev and M. N. Lytov, “Irrigation management
model based on soil moisture distribution profile,” IOP Conference
Series: Earth and Environmental Science, vol. 577, no. 1, p.
012022, sep 2020. [Online]. Available: https://dx.doi.org/10.1088/
1755-1315/577/1/012022

T. Kelly, T. Foster, D. M. Schultz, and T. Mieno, “The effect
of soil-moisture uncertainty on irrigation water use and farm
profits,” Advances in Water Resources, vol. 154, p. 103982, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0309170821001378

Y. Huang, H. Jiang, W. feng Wang, W. Wang, and D. Sun, “Soil
moisture content prediction model for tea plantations based on
SVM optimised by the bald eagle search algorithm,” Cognitive
Computation and Systems, vol. 3, no. 4, pp. 351-360, Sep. 2021.

R. Togneri, D. Felipe dos Santos, G. Camponogara, H. Nagano,
G. Custodio, R. Prati, S. Fernandes, and C. Kamienski, “Soil
moisture forecast for smart irrigation: The primetime for machine
learning,” Expert Systems with Applications, vol. 207, p. 117653,
2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0957417422009563

J. Brinkhoff, J. Hornbuckle, and C. Ballester Lurbe, “Soil
moisture forecasting for irrigation recommendation,” IFAC-
PapersOnLine, vol. 52, no. 30, pp. 385-390, 2019, 6th IFAC
Conference on Sensing, Control and Automation Technologies
for Agriculture AGRICONTROL 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896319325078

Y.-A. Chen, W.-H. Hsieh, Y.-S. Ko, and N.-F. Huang, “An ensemble
learning model for agricultural irrigation prediction,” in 2021 Inter-
national Conference on Information Networking (ICOIN), 2021, pp.
311-316.

P. Kumar, A. Udayakumar, A. Anbarasa Kumar, K. Senthama-
rai Kannan, and N. Krishnan, “Multiparameter optimization system
with denn in precision agriculture for advanced irrigation planning
and scheduling based on soil moisture estimation,” Environmental
Monitoring and Assessment, vol. 195, no. 1, p. 13, Oct 2022.
[Online]. Available: https://doi.org/10.1007/s10661-022-10529-3

O. Rozenstein, L. Fine, N. Malachy, A. Richard, C. Pradalier,
and J. Tanny, “Data-driven estimation of actual evapotranspiration
to support irrigation management: Testing two novel methods
based on an unoccupied aerial vehicle and an artificial neural
network,” Agricultural Water Management, vol. 283, p. 108317,
2023. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0378377423001828

S. Hussain, M. Mubeen, W. Nasim, S. Fahad, M. Ali, M. A.
Ehsan, and A. Raza, “Investigation of irrigation water requirement
and evapotranspiration for water resource management in southern
punjab, pakistan,” Sustainability, vol. 15, no. 3, 2023. [Online].
Available: https://www.mdpi.com/2071-1050/15/3/1768

S. S. Hemming, H. F de Zwart, A. A. Elings,
I. Righini, and A. A. Petropoulou, “Autonomous greenhouse
challenge, first edition (2018),” 2019. [Online]. Avail-

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

able: https://data.4tu.nl/articles/dataset/Autonomous__ Greenhouse _
Challenge First Edition 2018 /12717758/1

U. Ahmad, A. Alvino, and S. Marino, “Solar fertigation: A
sustainable and smart iot-based irrigation and fertilization system
for efficient water and nutrient management,” Agronomy, vol. 12,
no. 5, 2022. [Online]. Available: https://www.mdpi.com/2073-4395/
12/5/1012

E. Rahm and H. Do, “Data cleaning: Problems and current ap-
proaches,” IEEE Data Eng. Bull., vol. 23, pp. 3-13, 01 2000.

F. E. Grubbs, “Procedures for detecting outlying observations in
samples,” Technometrics, vol. 11, no. 1, pp. 1-21, 1969. [Online].
Available: https://www.tandfonline.com/doi/abs/10.1080/00401706.
1969.10490657

V. Aggarwal, V. Gupta, P. Singh, K. Sharma, and S. Neetu, “Detec-
tion of spatial outlier by using improved z-score test,” 04 2019, pp.
788-790.

A. Geron, Hands-on machine learning with scikit-learn, keras,
and tensorflow: Concepts, tools, and techniques to build intelligent
systems, 2nd ed. O’Reilly Media, Inc., 2019.

R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its
Applications. Springer New York, 2000.

R. Mushtaq, “Augmented dickey fuller test,” SSRN Electronic Jour-
nal, 2011.

H. Wickham, ggplot2. Springer International Publishing, 2016.

I. Syarif, A. Prugel-Bennett, and G. Wills, “Svm parameter
optimization using grid search and genetic algorithm to improve
classification performance,” TELKOMNIKA (Telecommunication
Computing Electronics and Control), vol. 14, no. 4, p. 1502, Dec.
2016. [Online]. Available: http://dx.doi.org/10.12928/telkomnika.
v14i4.3956

P. I. Frazier, “A tutorial on bayesian optimization,” 2018.

A. Khamis, Z. 1. ., K. H. ., and A. T. M. ., “The effects of outliers
data on neural network performance,” Journal of Applied Sciences,
vol. 5, no. 8, pp. 1394-1398, Jul. 2005.

E. Duesterwald, A. Murthi, G. Venkataraman, M. Sinn, and D. Vi-
jaykeerthy, “Exploring the hyperparameter landscape of adversarial
robustness,” 2019.

R. Novak, Y. Bahri, D. Abolafia, J. Pennington, and J. Sohl-
Dickstein, “Sensitivity and generalization in neural networks: an
empirical study,” 02 2018.

https://journal.uob.edu.bh


https://dx.doi.org/10.1088/1755-1315/577/1/012022
https://dx.doi.org/10.1088/1755-1315/577/1/012022
https://www.sciencedirect.com/science/article/pii/S0309170821001378
https://www.sciencedirect.com/science/article/pii/S0309170821001378
https://www.sciencedirect.com/science/article/pii/S0957417422009563
https://www.sciencedirect.com/science/article/pii/S0957417422009563
https://www.sciencedirect.com/science/article/pii/S2405896319325078
https://www.sciencedirect.com/science/article/pii/S2405896319325078
https://doi.org/10.1007/s10661-022-10529-3
https://www.sciencedirect.com/science/article/pii/S0378377423001828
https://www.sciencedirect.com/science/article/pii/S0378377423001828
https://www.mdpi.com/2071-1050/15/3/1768
https://data.4tu.nl/articles/dataset/Autonomous_Greenhouse_Challenge_First_Edition_2018_/12717758/1
https://data.4tu.nl/articles/dataset/Autonomous_Greenhouse_Challenge_First_Edition_2018_/12717758/1
https://www.mdpi.com/2073-4395/12/5/1012
https://www.mdpi.com/2073-4395/12/5/1012
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657
http://dx.doi.org/10.12928/telkomnika.v14i4.3956
http://dx.doi.org/10.12928/telkomnika.v14i4.3956
https://journal.uob.edu.bh

1412

K

-
Lele.
%

oy

410 Alisy;

i

)

¢
j Hamed Laouz, et al.: Performance and Robustness Analysis of Advanced Machine Learning Models

Hamed Laouz is a PhD student in the com-
puter science department at the university
of Biskra (Algeria), specializing in artificial
intelligence applications. He holds a Mas-
ter’s degree in artificial intelligence from
university of Biskra. His research interests
focus on integrating Al techniques in the
smart-farming sector, particularly in irriga-
tion tasks and greenhouse climate control.

Soheyb Ayad is an associate professor in
the computer science Department at the
university of Biskra (Algeria) and a mem-
ber of LINFI laboratory. His research in-
terests span various areas, including Al-
enabled Networks, Internet of Things, 5G
and Beyond Networks, SDN/NFV and smart
systems applications. Additionally, he has
authored several international publications in
these fields.

ment.

Labib Sadek Terrissa is a full professor
in computer science at Biskra University,
Algeria. He is also a senior consultant in dig-
italization project management. After receiv-
ing an engineering degree in electronics, he
received his Ph.D. in computer engineering
in 2006 from Le Havre University, France.
His current research interests include cloud
computing, Machine learning, Smart main-
tenance, and Prognostic and Health Manage-

Aicha Nabila Benharkat is Associate Pro-
fessor at the Computer Science Department
(INSA de LYON) since 1992. In this role,
she worked on the Integration of heteroge-
neous databases using Description Logics.
Currently, her research interests include the
interoperability domain, schema matching
techniques in small and large scale, business
process as well as the interoperability in ser-
vice oriented information system and quality

and Web services discovery. Since 2013, her work has evolved
into the cloud domain and particularly to the development of a
cloud application development methodology, to the migration of
applications in the cloud and finally to the protection of the privacy
during all the lifecyle of data resulting from connected objects.

environment.

Samir Merdaci has a PhD on soil and water
preservation in arid lands and his position
is an assistant professor in the agronomy
department at the University of El-Oued-
Algeria. He was also the head of the ex-
perimental station at the Technical Institute
for the Development of Saharan Agronomy
in Biskra-Algeria. His research interests are
the use of remote sensing and Geographic
Information Systems GIS in agriculture and

https://journal.uob.edu.bh


https://journal.uob.edu.bh

	Introduction
	Materials and Methods
	Data Description
	Data Preprocessing
	Data Cleaning
	Data Reconstruction
	Data Normalization

	Data Preparation
	Simple Data Preparation
	Time Series Data Preparation

	Proposed Models
	Evaluation Metrics
	Hyper-parameter Tuning
	Grid-Search CV
	Bayesian Optimization


	Results
	Models' Performance Results
	Obtained Result without Data Optimization
	Comparison of Results after Removing Outliers
	Comparison of Results after Differencing Data
	Comparison of Results after Applying all Data-based Optimization

	Comparison of Models' Robustness

	Discussion
	Conclusions and future work
	References
	Biographies
	Hamed Laouz
	Soheyb Ayad
	Labib Sadek Terrissa
	Aicha Nabila Benharkat
	Samir Merdaci


