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Abstract: It is devastating that daily, there is an ample number of car crashes that cause damage to automobiles, onboard passengers
get injured, and others tend to lose their lives. Road crashes are fast rising across the globe and have drawn many road safety
commissions and concerned individuals to discuss ways to reduce this menacing situation drastically. With the introduction of artificial
intelligence and technological advancement, the government and state commissions have beckoned on the various universities and
research institutions to develop methods to curb the rise of automobile crashes. Some causes of these crashes include drunk driving
and drowsiness, the latter is most prevalent as it occurs to all and sundry. Drowsiness detection can be categorized into three main
techniques; behavioral-based, vehicular-based, and physiological-based. In this research, the behavioral-based approach was studied,
with significant consideration being the cost of implementation, execution time, and accuracy. This research investigates drowsiness
detection using a novel approach that directly utilizes image pixels from facial geometry to enhance accuracy in classification. Unlike
prior studies that relied solely on recorded EAR and MOR values from images, our methodology harnesses direct input from facial
features, yielding promising results in drowsiness classification. Three machine learning (ML) classifiers were considered: Support
Vector Machine (SVM), Naı̈ve Bayes (NB), and Random Forest (RF). A dataset of 1448 images was used for training and testing
these classifiers: 70% for training and 30% for testing. Random Forest classifier gave the best accuracy of (92.41%) compared to SVM
(90.34%) and Naı̈ve Bayes (69.43%). A deep neural network (VGG16) was used to classify drowsiness, and this gave a high accuracy
of 97.20%, which outperformed the traditional machine learning models.
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1. Introduction
Drowsiness detection is a safety feature used in cars to

help avoid crashes caused by drowsy drivers [1]. Numerous
detection techniques assess driver tiredness and warn the
motorist. Detection methods can be categorized based on
behavioral, vehicular, and physiological parameters. Ve-
hicular and behavioral-based approaches are non-invasive.
Whereas vehicular-based techniques consider factors like
yaw angle, steering wheel behavior, and lane-changing pat-
terns [2], behavioral-based techniques are centralized on the
driver’s actions, including eye closeness ratio, eye blinking,
head movement, and yawning [1]. Physiological approaches
monitor the driver’s physiological conditions, such as heart-
beat, pulse rate, and electrical activity in the brain, and are
invasive or intrusive. The geometric properties of different
roads make vehicular highly unreliable [1]. The need to
purchase different sensors and devices makes physiological-

based approaches capital-demanding. Additionally, it is in-
vasive and frequently aggravates and discomforts the driver.
Because it is affordable [3], [4] and easy/convenient to
apply [4], the behavioral-based method is thus extensively
employed. However, how the data is processed, including
lighting and illumination, impacts behavioral techniques.

In a study by Chellappa et al. [5], the somatic sen-
sor, temperature sensor, LM-35, and photoplethysmography
(PPG) were used to measure the core body temperature
and pulse rate. This study employed the integration of
behavioral and physiological parameters to detect drowsi-
ness. The Viola-Jones algorithm and Haar cascade classifier
were used together with the devices for detection, with
an achieved detection accuracy of 80.55%. Awais et al.
considered biological parameters such as the heart rate,
time-domain, and frequency domain measures extracted
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from electroencephalogram (EEG) and electrocardiogram
(ECG) combined with the SVM and k-strongest strengths
(kSS) to detect drowsiness [6]. The overall performance of
their study was 80%. A summary of some exciting literature
on behavioral and vehicular methods is given in [1]. In
particular, the study proposed in [7], used the deep learning
method and achieved an accuracy of 83.30%. Essel’s study
in [1] draws the method and main contributions from [8]
and the model’s applicability to Android devices. Deng
and Wu [9] combined the kernelized correlation filters
(KCF) and convolutional neural network (CNN) algorithm
in detection and called it DriCare with an accuracy of
93.60%. The work by N. Kumar et al. [10] designed a
system to detect real-time eye blinking using the Viola-
Jones detection and active contour method for yawning. The
experiment involved 70 male and 30 female volunteers of
different ages and facial characteristics. The experiments
were conducted at six different times: (1) Morning (6 AM
to 11 AM), (2) Afternoon (11 AM to 2 PM), (3) Critical
Time 1 (2 PM to 4 PM), (4) Evening (5 PM to 8 PM), (5)
Night (8 PM to Mid Night 3 AM), and (6) Critical Time 2
(Mid Night 3 AM to 6 AM). The result showed an accuracy
of 92% for eye detection while mouth detection achieved
an accuracy of 88%.

A deep CNN for driver drowsiness detection based on
eye state was proposed in [11] . A dataset of 1,200 samples
from the video stream and 2850 images were used to
train, test, and validate the ML model. The Viola-Jones
algorithm was used for face and eye detection. First, the
convolution layer in CNN extracted the facial features;
then, the SoftMax layer classified images as sleepy or non-
sleepy. Two experiments were conducted, and of the two,
the first experiment was on 2,850 images (trained 1,200
images; validated 500 images; and tested 1,150 images);
the second experiment was conducted on 1,200 video sam-
ples. The highest accuracy recorded from the experiment
was 96.42%. The authors reiterated that the classification
of face detection techniques could be grouped into two,
that is, geometric-based techniques and image-based tech-
niques. The geometric extraction method extracts shape
and location-related metrics from the eyes and eyebrows.
Image-based approaches for face detection use statistical
neural networks and linear subspace methods. The study by
Latreche et al [12] aimed to identify the most informative
brain region for drowsiness detection without sacrificing ac-
curacy. Using a deep learning model and publicly available
data, the central region emerged as the most effective single
region, achieving a mean accuracy of 73.55%. Combining
central and occipital regions further improved accuracy to
75.53%, offering a promising approach to enhance EEG-
based drowsiness detection in real-time. However, wearable
devices with many electrodes may be uncomfortable and
costly.

The work by H. Lamaazi [13], introduces a two-stage
driver drowsiness detection system leveraging smart edge
computing. By utilizing mobile devices within the vehicle

for data capture and analysis without data sharing, privacy
concerns are addressed. The proposed framework employs
a distributed edge architecture and a data fusion strategy
involving facial expression analysis, car path detection, and
a two-layer LSTM algorithm, achieving an impressive av-
erage accuracy of 97.7% in drowsiness detection. Jebraeily
et al. in [14] address the issue of driver drowsiness using
a convolutional neural network (CNN) architecture by op-
timizing a network architecture search mechanism. The re-
search enriches the dataset by extracting videos showcasing
drowsy states and labeling the frames accordingly. Through
a genetic algorithm, an optimal CNN structure is deter-
mined, considering factors like the number of layers and
objective function type. Transfer learning is then employed,
leveraging the optimized network as a feature extractor,
and fine-tuning its fully connected layer for drowsiness
detection achieving an accuracy of approximately 99.8%.

Agarkar et al. in the paper [15] propose a camera-based
technique leveraging facial cues such as lip movements,
eye behavior, and hand gestures, which often accompany
yawning. By employing a front camera and Raspberry Pi
for image processing, the system continuously monitors the
driver’s condition. Results indicate the effectiveness of the
proposed method achieving an accuracy of 92.75%. In [16],
Peddarapu et al. highlight the urgent need for an effective
system to detect sleepy driving, emphasizing the importance
of early warnings to prevent potential crashes. Utilizing
machine learning and computer vision methodologies, that
is, exploring behavioral techniques, the system focuses on
fatigue indicators such as head pose, facial expressions, and
eye tracking for precise drowsiness identification in real-
time. Leveraging Raspberry Pi technology ensures stability,
adaptability, and cost-efficiency, enhancing accessibility for
multipurpose vehicles. By providing timely alerts to drivers,
the system plays a crucial role in enhancing road safety.
Its readiness to combat drowsy driving marks a significant
contribution towards creating safer driving conditions and
safeguarding the well-being of drivers.

In this paper, we aim to: (1) Provide a comprehen-
sive review of existing drowsiness detection methodologies,
spanning from behavioral cues to advanced machine learn-
ing techniques; (2) Compare the performance of traditional
ML classifiers with deep learning models in drowsiness
detection accuracy; (3) Investigate recent advancements
in ML and deep learning methods for driver drowsiness
detection; and (4) Contribute insights into the most effective
approaches for high-fidelity drowsiness detection in real-
world driving scenarios.

The paper is organized as follows, in Section 2, the
proposed work is elaborated. Results and discussions are
elaborated in Section 3. A conclusion will be drawn in
Section 4.

2. ProposedWork
The research outlined in this paper integrates both

traditional machine-learning methods and deep-learning ap-
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proaches to implement a high-fidelity drowsiness detection
algorithm. In our study, the selection of machine learning
classifiers (SVM, Random Forest, Naı̈ve Bayes) and the
deep neural network (VGG16) was based on rigorous eval-
uation of their suitability for drowsiness detection tasks.
Specific features extracted from facial images, such as
color histograms, texture descriptors, and geometric fea-
tures, were utilized to train the classifiers and fine-tune the
neural network. The rationale behind choosing these models
and features was to maximize accuracy and generalization
performance. A schematic of the pipeline is shown in Fig. 1.
The subsequent sections provide comprehensive insights
into the utilization of these methodologies.

Figure 1. Schematic of the proposed pipeline flow

A. Machine Learning Methods
This study introduces a detection framework utilizing

machine learning classifiers to improve effectiveness. The
model proposed, along with its implementation stages as
depicted in Figure 1–comprising data acquisition, data
preprocessing, machine learning training and classification,
and performance assessment – each contributes significantly
to the system’s overall functionality, guaranteeing strong
detection capabilities and thorough performance evaluation.

1) Data Acquisition
Illustrated in Figure 1, the model initiates with data

gathering, where machine learning algorithms operate on

static frames. The dataset, sourced from [17], encompasses
participants of various ethnic backgrounds and genders.
It includes individuals’ images under diverse conditions,
such as those with and without glasses, yawning, and not
yawning. To ensure the representativeness of the dataset,
we included images depicting a diverse range of facial
expressions and poses, reflecting real-world scenarios of
driver fatigue. Subsequently, the dataset was partitioned into
training and testing subsets.

2) Data Preprocessing
During this stage, the training data underwent prepro-

cessing before being fed into the classifier. This involved
resizing the images to dimensions of 32×32 to expedite
processing and conserve memory resources. Additionally,
the labels associated with each image were converted into
binary values. The drowsy state was denoted by a binary
“zero”, while the non-drowsy state was represented as a
binary “one”. These steps were crucial for enhancing the
model’s robustness and generalization ability.

3) Machine Learning Classifier and Training Process
Once the training data has undergone preprocessing, it

becomes suitable for training the classifiers. The machine
learning classifiers employed follow a supervised learning
approach. Specifically, three classifiers–SVM, NB, and RF–
are utilized, with their respective specifications provided
below. The selection of these classifiers was based on their
suitability for image classification tasks and their compar-
ative performance in previous studies. SVM is known for
its effectiveness in separating classes in high-dimensional
spaces, while Random Forest is robust against overfitting
and works well with diverse features. Naı̈ve Bayes, despite
its simplifying assumptions, was included for comparison
given its efficiency with large datasets and categorical
features.

a) Support Vector Machine (SVM) represents an early
classification method in machine learning, originating in
the early 1990s and serving as a generalized version of the
‘maximal margin classifier’. Initially, SVM was confined to
situations with linear boundaries; however, advancements
have extended its applicability to diverse datasets. SVM
operates on the concept of a hyperplane, where in an n-
dimensional space, a hyperplane constitutes a flat affine sub-
space of dimension (n-1). In two-dimensional (2D) space,
the hyperplane equates to a line, while in three dimensional
(3D) space, it corresponds to a plane. In 2D, a hyperplane
is described by equation (1):

mx + ny + c = 0 or mx + p = 0 (1)

If a training point lies directly on this equation, it resides on
the hyperplane. However, in practice, training observations
often fall on either side of the hyperplane, satisfying the
inequalities in equation (2):

mx + ny + c < 0 or mx + ny + c > 0 (2)

The primary objective is to construct a hyperplane that
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perfectly segregates the training sets based on their class
labels. Subsequently, test data is classified according to the
side of the hyperplane it occupies. Despite the possibility
of numerous hyperplanes facilitating perfect separation of
data, the optimal separating hyperplane is selected based
on maximizing the margin away from the training points.
This is determined by computing the perpendicular distance
from each training point to the given separating hyperplane,
with the smallest distance representing the margin. Test
observations are then classified based on their relative
position to the maximal margin hyperplane.

Support vectors denote the training points closest to the
hyperplane, influencing the margin’s magnitude. In cases
where no separating hyperplane exists, the concept of a
soft margin is introduced, allowing some training data to
be misclassified to enhance the classifier’s performance on
other observations. A regularization parameter, c, impacts
this optimization problem, defining the extent of the mar-
gins. A small c value leads to narrow margins, indicative
of high fidelity to the data and low variance but high
bias, with few support vectors. Conversely, a large c value
results in wider margins, potentially accommodating more
misclassifications, leading to lower bias, higher variance,
and more support vectors.

For non-linear class boundaries, the feature space is
expanded using higher-order polynomial functions of the
predictors. SVM offers several advantages, including ef-
ficiency in high-dimensional spaces, utilization of only a
small subset of training points (known as support vectors)
in the decision function, and the ability to specify various
kernel functions for the decision function.

b) Random Forest (RF) machine learning technique
involves the aggregation of multiple decision trees. Aggre-
gation is a method to mitigate high variance by combining
the outcomes of several decision trees through a majority
voting process in classification, thus enhancing prediction
accuracy. The procedure includes creating multiple sub-
training sets, constructing individual prediction models us-
ing these sets, and then averaging the prediction results
through majority voting. However, slight variations in the
data can lead to significant changes in the final estimated
tree. Mathematically, if the results of the individual predic-
tion models are denoted by:

C′(a),C′′(a),C′′′(a), . . .Ck(a) (3)

The average prediction Cavg(a) can be computed as:

Cavg(a) =
1
k

k∑
i=1

Ck(a) (4)

Given the challenge of obtaining large datasets, the concept
of bootstrapping aggregation, often referred to as bagging
(repeated sampling with replacement), is commonly em-
ployed. The number of estimators is typically represented
by the parameter k, where a value of one hundred (100) is

often sufficient for achieving satisfactory performance. In
random forest classification, a useful parameter for estimat-
ing test error is the Out-of-Bag (OoB) error. On average,
each bagged tree utilizes two-thirds of the observations,
leaving one-third as Out-of-Bag observations, which are
not used for fitting. Predictions can be made for each ith
observation in the Out-of-Bag set, followed by a majority
vote for classification. The OoB approach for estimating
test error is particularly advantageous when bagging large
datasets, as traditional cross-validation may be challenging.
Decision trees offer key advantages, including their simplic-
ity in explanation and their resemblance to human decision-
making processes.

c) Naı̈ve Bayes (NB) classifier operates on three prin-
ciples: the utilization of conditional probability, Bayes’
theorem, and the assumption of feature independence. Prob-
ability denotes the likelihood of event occurrence, and
Naı̈ve Bayes employs the following conditional probability
equation represented as:

P(D|E) =
P(D, E)

P(E)
(5)

where P(D, E) denotes the intersection between D and
E, and P(E) is the probability of E. P(D|E) signifies
the probability of D occurring given that E has already
occurred. The relationship between P(D|E) and P(E|D) can
be expressed via Bayes’ theorem, articulated as:

P(E|D) =
P(D|E).P(E)

P(D)
(6)

The Naı̈ve Bayes classifier establishes a connection between
input features and class based on probability. Given a set
of features X = {X1, X2, X3. . . , Xn} and the objective is to
forecast the class X, the approach is to identify the X that
yields the highest P(Y |X). Examining all features for each
class can be intricate; thus, the optimal strategy is to adopt
Bayes’ theorem. For this scenario, Bayes’ theorem can be
expressed as:

P(Y |X) =
P(X|Y).P(Y)

P(X)
(7)

Since P(X)remains constant across all classes as it is
independent of Y, attention now focuses on determining the
values for P(X|Y) and P(Y), which can be estimated from
the data. P(Y) derived from the training data is defined as:

P(Y) =
Number of Samples Labeled Y

Total Number of Samples
(8)

For P(X|Y), the independence assumption is employed, stat-
ing that individual features are independent. It is expressed
as:

P(X1, X2, . . . , Xn|Y) = P(X1|Y).P(X2|Y) . . . P(Xn|Y) (9)

This classifier offers several advantages: it is fast and
uncomplicated to implement; it scales effectively, requiring
minimal parameters, and the feature probabilities can be
computed in parallel due to their independence.
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B. Deep Learning Model
Recently, there has been a transition from conven-

tional methods towards employing deep neural networks
for image classification tasks. Often, the traditional clas-
sifiers encounter limitations when dealing with extensive
datasets. The sheer volume of data being generated has
been increasing exponentially in recent years. Moreover,
with the emergence of faster processing units, CNNs, a
class of deep learning models well-suited for image clas-
sification tasks have become the standard approach. Deep
learning represents a subset of machine learning involving
the creation of CNN models capable of learning intricate
abstractions or representations of given data and leveraging
this information for qualitative and quantitative predictions.
Essentially, deep learning plays a crucial role, particularly
in computer vision, as CNNs can autonomously extract
patterns or features from training data.

Despite the proliferation of large datasets across vari-
ous domains, image classification models typically contend
with limited data, ranging from a few hundred to a few
thousand samples. While training from scratch with this
limited data is feasible, achieving optimal accuracy is often
challenging. Deep learning endeavors to enhance outcomes
while reducing execution time, computational complexity,
and implementation costs. Numerous algorithms have been
devised to mitigate costs, yet accuracy remains a paramount
concern for image classification. Generally, neural network
accuracy is influenced by factors such as the quantity of
training samples, overfitting (wherein the network performs
well on the provided data but struggles to generalize to
unseen data), regularization techniques (such as data aug-
mentation and dropout to alleviate overfitting), and model
parameters (including the number of filters per convolu-
tion layer and the networks’ depth). It is worth noting
that neural networks are computationally demanding and
require significant memory resources, often necessitating
high-speed Graphics Processing Unit (GPUs) or Tensor
Processing Units (TPUs) for efficient execution. This chal-
lenge has been partly addressed through the concept of
transfer learning, wherein pre-trained models with learned
parameters are made available for other classification tasks.
This approach arose due to the extensive computational
resources and time required to train these models initially,
resources that are often inaccessible to most users. This
helps to expedite model training by leveraging pre-existing
knowledge and fine-tuning the network’s parameters on
our specific drowsiness detection task, thereby reducing the
need for extensive training data.

Due to the limited size of the dataset, data augmen-
tation techniques were employed to augment the dataset.
Subsequently, the data was partitioned into three subsets
for training, validation, and testing, respectively, following
a percentage ratio: 70% for training, 15% for validation,
and 15% for testing.

The preprocessing operation of the training data en-

compasses various tasks, including reading the image files,
decoding the image content into RGB pixel grids, convert-
ing the pixels into floating-point tensors, and subsequently
rescaling the pixel values to the [0,1] interval, as neural
networks preferably operate on small input values. The
Keras package provides utilities to facilitate these prepro-
cessing steps. Specifically, the ImageDataGenerator utility
sets up Python generators that automatically convert image
files into batches of preprocessed tensors. Data augmen-
tation is employed to generate additional samples from
existing training data by applying diverse transformations.
The objective is to expose the model to varied training
data, thereby enhancing its robustness, and improving its
ability to generalize to new data. Moreover, data augmen-
tation helps mitigate the risk of overfitting, which arises
when there are insufficient samples for learning. Several
transformations were considered during data augmentation,
resulting in images with channel shifts, zoom-ins of 0.2,
height shifts of 0.2, rotations of 45°, width shifts of 0.2, hor-
izontal flips, and shear angle changes to 45o. Ultimately, the
total number of images available amounted to 13,032. The
training set comprised 4,554 drowsy and 4,567 non-drowsy
images, while the validation set contained 976 drowsy and
979 non-drowsy images. The test set encompassed 977
drowsy and 979 non-drowsy images.

C. VGG16 architecture
The VGG16 architecture was developed by Simonyan

and Zisserman [18]. This architecture is renowned for its
ease of implementation and applicability to various image
classification tasks, rendering it a widely adopted CN ar-
chitecture. Figure 2 illustrates the structure of the VGG16
network, which can be divided into two components: the
convolutional base, trained on ImageNet and comprising a
series of pooling and convolutional layers, and the classifier
base, contingent upon the number of classes. Typically,
the network comprises 16 primary layers, including 13
convolutional layers and 3 dense layers. To alleviate the
computational burden, a pre-trained model was employed-
essentially a pre-saved network trained on a large dataset
(ImageNet). Training a VGG16 model from scratch entails
dealing with approximately 15 million parameters, which
is computationally demanding and necessitates 2-4 GPUs
over several days or weeks. Consequently, transfer learning
was introduced, allowing for the utilization of pre-trained
weights of different classification tasks without the need
for retaining albeit requiring modifications to the classifier
base to accommodate the required number of classes for a
specific problem at hand.

The convolutional base is employed due to the broad
and reusable patterns learned at this stage, encompassing
generic features such as colors, visual edges, and textures.
We transferred the learned parameters from the convolu-
tional base onto our datasets. However, the patterns earned
by the classifier base are more tailored to the specific
classes in which the model was trained. Thus, we had to
train our dense base on top to adapt to the binary classi-
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Figure 2. Schematic of the the VGG16 architecture.

fication task. Consequently, our modified CNN comprises
13 convolutional layers and 2 dense layers. The number
of filters in convolution layers increases (multiples of 64)
as we progress deeper into the network, ranging from 64
to 512 filters. Each convolutional layer in the network
is a 3×3 grid with varying filters. The increase in filter
count with depth is expected as the level of abstraction
and the number of features to extract grow. Additionally,
generality diminishes as the convolutional layers deepen.
Rectified Linear Unit (ReLU) activation is applied with
Maxpooling on the convolved outputs. While three main
activations–sigmoid, hyperbolic tangent (tanh), and ReLU–
are typically used for hidden layers, ReLU is preferred
due to its avoidance of the vanishing gradient problem
during backpropagation, ultimately yielding superior model
accuracy. Following the last convolution, the output is
flattened into a single stretch of neurons known as the dense
layer. The first dense layer consists of 256 neurons, while
the second dense layer contains 2 neurons, representing the
binary classification output. In the output layer, we consider
three activations: linear, sigmoid, and SoftMax. Although
sigmoid or SoftMax can be employed for classification
problems, SoftMax activation, which converts a vector of
numbers into a vector of probabilities, was chosen in this
study due to its superior accuracy.

The VGG16 model, integrated into Keras, operates with
an input image size of 224×24 pixels. Fine-tuning was
performed by adding a custom classifier base on top of the
convolutional base, freezing the base network, training the
added part, unfreezing some layers in the base network,
and jointly training both these layers and the classifier.
Weights are computed solely for the convolutional layers.
Additionally, after each convolution operation, the output
image assumes the depth of the convolved filter. Max-
pooling layers do not possess parameters/weights; instead,
they extract the maximum value representing a section of
the output shape, thereby reducing the dimension of the
output shape.

Parameter specifications are essential for training the
classifier base to enhance prediction accuracy. These pa-
rameters include the cost function, optimizer type, and
learning rate. The cost function penalizes deviations be-
tween predicted and expected labels, to minimize incorrect

predictions. Various loss functions, such as mean squared
error (MSE) and binary cross-entropy, can be utilized
depending on the problem type. Optimizers adjust neural
network weights to minimize cost, significantly impacting
the training outcome. Adaptive optimizers, such as Adaptive
Moment Estimation (Adam), offer advantages over tradi-
tional gradient descent algorithms by adjusting the learning
rate dynamically. Table Ishows the parameter values used
in training the classifier base.

TABLE I. Parameters for training classifier base

Parameter Choice
Loss Function Binary crossentropy
Optimizer Adam
Learning Rate 2e − 6

D. Performance Evaluation
After the entire models are trained, the final step as seen

in Figure 1 is to evaluate the performance. Now, the test data
is passed through the models. Again, different performance
metrics have been developed to analyze results. For the
traditional classifiers, the metrics include accuracy, recall,
precision, and F-score. These metrics provide quantitative
measures of the model’s effectiveness in distinguishing
between drowsy and non-drowsy states.

Accuracy stands out as a prominent performance metric
in machine learning, particularly in scenarios with unbiased
class distribution. It gauges the classifier’s capability to
assess, scrutinize, and discern relationships, patterns, and
variations among the features defining a dataset. The ac-
curacy measure heavily relies on the input data and the
classifier’s adeptness in leveraging learned features to en-
hance predictions for unseen data. Mathematically, accuracy
is represented as shown in the following equation:

Accuracy =
T P + T N

T P + FP + T N + FN
(10)

Where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. TP refers to the number
of images with an expected drowsy label and correctly
predicted with a drowsy label. TN also refers to the number
of images with an expected non-drowsy label and correctly
predicted with a non-drowsy label. However, FP refers to
the number of images assigned a drowsy label rather than
the correct expected non-drowsy label. Also, FN refers to
the number of images assigned a non-drowsy label rather
than the correct expected drowsy label.

In machine learning, recall measures how correctly the
model predicted or found correct positive responses (i.e.,
TP) against the total number of expected correct responses.
It is mathematically expressed by Eq. (11) as:

Recall =
T P

T P + FN
(11)

Precision measures how the model found correct pos-
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itive responses (TP) to the total number of positive re-
sponses. It is mathematically expressed by Eq. (12) as

Precision =
T P

T P + FP
(12)

F–score is the weighted average of precision and recall.
For even class distribution, accuracy is an ideal performance
measure, while an F-score is the best measure of a system’s
performance for uneven class distribution. F-score is also
another measure of a test’s accuracy given mathematically
as:

F1-Score = 2 ×
Precision × Recall
Precision+ Recall

(13)

According to [19], accuracy and sensitivity are the main
measures. Sensitivity describes cases where drowsiness is
present, and this is a significant consideration as the driver
ought to be notified when in a drowsy state. However,
to evaluate performance, there is the need to obtain the
confusion matrix; this is a square matrix diagram with in-
formation on the various correct and incorrect classifications
made by the classifiers. The performance of the neural
networks is evaluated based on the loss and accuracy.

In terms of cost and execution time, traditional machine
learning methods such as SVM, NB, and Random Forest
can typically be executed on the CPU, which is gener-
ally more cost-effective and readily available compared to
GPU resources. However, for deep learning models like
VGG16, large-scale training tasks often necessitate GPU
resources due to the computational intensity involved. While
running traditional models may be more feasible in terms
of resource requirements, the VGG16 architecture, with its
numerous layers and complex structure, demands more time
for training compared to traditional models. Despite the
longer training duration, leveraging a sufficiently powerful
system for VGG16 training can enhance its reliability and
accuracy in drowsiness detection compared to traditional
models. This is attributed to the deeper understanding and
feature extraction capabilities of deep learning architectures
like VGG16, which can lead to more robust and nuanced
detection outcomes. Therefore, while traditional methods
may offer advantages in terms of resource efficiency, the
potential performance gains achieved by VGG16 justify the
investment in computational resources for training.

3. Results and Discussion
A learning curve exhibits an estimator’s validation and

training scores across different counts of training samples. It
serves as a tool to assess the potential benefits of additional
training data and to gauge whether the estimator is prone
to bias or variance errors. Each estimator has benefits and
disadvantages. Bias and variance can be used to break down
the generalization error. An estimator’s bias is represented
by its average error across many training sets. An esti-
mator’s variance reveals how responsive it is to various
training sets. Ideally, a dataset is grouped into three: training
dataset, validation dataset, and testing dataset. Training

takes place on the training set, followed by evaluation on
the validation set. When it appears that the experiment has
been successful, a final evaluation of the test set may be
conducted. Nevertheless, splitting the available data into
three sets significantly reduces the number of samples
available for model training. The outcomes may fluctuate
based on the randomization of the (train, validation) set
pairs.

Cross-validation (CV) is a technique that can be used
to solve this issue. When doing a CV, the validation set is
no longer required, but a test set should still be kept aside
for final assessment. Therefore, the training set is divided
into k smaller sets in the fundamental strategy, known as
a k-fold CV. For each of the k ”folds,” the procedure is as
follows as seen in Figure 3:

• A model is trained using k-1 of the folds.

• The resulting model is validated on the remaining fold
(i.e., used as a test set to compute performance).

Figure 3. Illustration of the K-fold cross-validation.

The performance indicator provided by k-fold cross-
validation is derived from the average of results obtained
during the loop iterations. Despite its potential computa-
tional expense, this method efficiently utilizes the available
data without excessive wastage (unlike the fixed random
validation set), which proves advantageous especially when
dealing with limited samples.

Figure 4 shows the learning curves for the tested clas-
sifiers. For the NB classifier, the training score declined as
the number of samples increased while the cross-validation
score was approximately constant. With increasing training
set size, the validation score and training score for the
naı̈ve Bayes algorithm converge to a pretty low number.
Therefore, adding more training data is probably not going
to help much. For the SVM classifier, the training score
was constant, with an accuracy score of 100, while the CV
score increased with an increase in the number of training
examples. In other words, the SVM’s training score is sig-
nificantly higher than its validation score for small amounts
of data. Increased generalization will probably result from
adding additional training data. For the RF classifier, the
training score stayed constant as well, with an accuracy
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score of 100, while the cross-validation score increased with
an increase in the number of training examples. This means
that with small amounts of data, the RF’s training score is
substantially higher than its validation score. More training
samples will almost certainly result in more generalization.

Figure 4. Learning curves for the tested classifiers

Scalability describes how the model can learn, that is,
the rate it can fit the model to a training data size. Often
the goal is to have a model that can learn fast without
consuming much memory, irrespective of the training data
size. Figure 5 shows the scalability of the classifiers, a
plot of the training examples against the fit times. Naı̈ve
Bayes took less time fitting the model to different training
sample sizes (0 - 80 milliseconds), followed by SVM (0
– 2.4 seconds). On the other hand, it took a time from
(25 milliseconds – 2 seconds) for RF to fit all the training
samples into the model.

Figure 5. Scalability of the tested classifiers.

Figure 6 shows the performance of the three models,
a plot of the test score against the “fit times”. For NB,
the accuracy score increases as the fit time increases. For
SVM, the accuracy score increases as fit times increases.
Similarly, the accuracy score for RF increases as the fit time
increases.

Figures 7– 9 are a graphical view of the confusion
matrix for SVM, Random Forest, and Naı̈ve Bayes. In
the algorithm, the drowsy class was represented as binary
zero, while the non-drowsy class was represented as binary
one. The binary representation on the left side represents
the predicted label and that at the bottom represents the
actual label. A total of 435 samples were used for testing

Figure 6. Performance of all three classifiers.

each classifier. The positive sample represents images with
drowsy labels, while the negative represents images with
non-drowsy labels.

Figure 7. Confusion matrix for SVM.

Figure 8. Confusion matrix for random Forest.

For the SVM classifier, 193 images were predicted
as True Positives, 200 as True Negatives, 29 as False
Positives, and 13 as False Negatives. Using the Random
Forest classifier, True Positives were 182, 220 predicted
True Negatives; False positives and Negatives were 27 and
6, respectively. Next, the Naı̈ve Bayes classifier had the
number of True Positives, True Negatives, False Positives,
and False Negatives to be 93, 209, 116, and 17, respectively.

Table II shows the performance after testing the three
classifiers and from the table, Random Forest recorded the
highest accuracy (92.41), followed by SVM (90.34) and

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 1443-1454 (Sep-2024) 1451

Figure 9. Confusion matrix for Naı̈ve Bayes.

Naı̈ve Bayes classifier (69.43). In this research, accuracy
is a good measure of performance because an even class
distribution was used. However, the F-score, a similar and
relevant performance metric, was considered for additional
justification of results. The results also show RF having the
highest F1-score (93.02) and the lowest (75.86) by Naı̈ve
Bayes. NB had the lowest accuracy, and a plausible reason
is that the independence assumption may not always hold as
there are no model interactions between the features. As a
result, it can limit classification power. it is seen that Naı̈ve
Bayes has the lowest precision (64.31), while SVM and RF
have the closest precision. This means that given 100 test
images, SVM correctly predicted approximately 89 and RF
approximately 87 with drowsy labels.

TABLE II. Accuracy of the classical machine learning algorithms.
RF: random forest;SVM: support vector machine; and NB: Naive
Bayes.

Classifier Accuracy Precision Recall F1-Score
RF 92.41 89.07 97.35 93.02

SVM 90.34 87.34 93.89 90.50
NB 69.43 64.31 92.48 75.86

Next, we look at the neural network performance shown
in Figure 10. The figure is the plot of accuracy against the
number of epochs with a standard batch size of 32. It is
observed that the validation accuracy plot closely follows
the training accuracy, which shows that the network is well-
trained and can generalize well. The training accuracy rises
from 0.52 to a final accuracy of 1.0, while the training loss
reduces from 0.6319 to 0.0024, respectively.

Figure 11 plots the training and validation loss against
the number of epochs. Generally, training and validation
loss is expected to decline for a good network model as the
network learns from the data. The training and validation
loss is close, which is evidence of a good, trained network.

After training and validating the neural network, the
network is tested with the test data. The confusion matrix
for the neural network is shown in Figure 12. The left
binary representation is the predicted label whereas that

Figure 10. Plot for training and validation accuracy (200 epochs).

Figure 11. Plot for training and validation loss (200 epochs).

at the bottom represents the actual labels. Binary zero (0)
represents a drowsy label while binary one (1) represents
non-drowsy labels. The network correctly predicted the
actual labels for drowsy images (1250) and incorrectly
predicted (70) of the non-drowsy images as drowsy. A total
of 1180 non-drowsy images were predicted correctly. In
summary, a total of 2500 images were tested on the network
and the confusion matrix is also shown in Figure 12

The accuracy, precision, recall, and F-score are com-
puted for this network and summarized in Table III. The
accuracy achieved for the test was 97.20. The model cor-
rectly predicted all drowsy cases, which is very important
in detection. Deep neural networks have outperformed the
three traditional machine learning methods, making it the
most preferred model for image classification.

TABLE III. Performance of VGG16 network

Classifier Accuracy Precision Recall F1-Score
VGG16 97.20 100 94.70 97.28
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Figure 12. Confusion matrix for the neural network.

4. Conclusion and Future work
This research investigates drowsiness detection using

three conventional machine learning classifiers and a deep
neural network. While prior research relied on recorded
EAR and MOR values from images as classifier input,
this study explores the utilization of image pixels, yielding
notable accuracy. Unlike in previous literature, which relies
on the accuracy of recorded values, the novel approach of
utilizing image pixels derives input values directly from
facial geometry, yielding promising results. Additionally,
the deep neural network demonstrates exceptional accu-
racy in drowsiness classification, surpassing all traditional
methods with an accuracy of 97%. Notably, all approaches
are non-invasive and cost-effective, making them suitable
for integration into automobile dashboards for convenient
drowsiness detection. While this research has made signifi-
cant strides in drowsiness detection using machine learning
classifiers and deep neural networks, it is essential to ac-
knowledge certain limitations and identify potential avenues
for future research. The study may have been constrained
by the size of the dataset used for model training and
testing. Expanding the dataset size, possibly collecting more
diverse samples from a wider range of demographic groups
and environmental conditions, could enhance the model’s
robustness and generalization capabilities. Although uti-
lizing image pixels directly from facial geometry yielded
promising results, the input features may still lack certain
nuances captured by more complex physiological measure-
ments. Future research could explore the integration of
additional biometric signals or multimodal data sources to
further improve detection accuracy. While accuracy is a
commonly used metric for assessing model performance,
it may not provide a comprehensive understanding of the
system’s effectiveness in real-world scenarios. Future stud-
ies could consider incorporating additional metrics such as
receiver operating characteristic (ROC) curves to evaluate
the model’s performance across different thresholds and
imbalanced datasets. Integrating the developed drowsiness
detection system into automobile dashboards or other real-

time applications may pose implementation challenges re-
lated to hardware compatibility, latency, and user inter-
face design. Future research should address these practical
considerations to ensure seamless deployment and user
acceptance. As deep neural networks often require signif-
icant computational resources for training and inference,
optimizing the model architecture and training process to
improve computational efficiency is crucial, especially for
deployment in resource-constrained environments. Future
work could explore techniques such as model compression,
quantization, and hardware acceleration to mitigate compu-
tational costs. In conclusion, while this study lays a strong
foundation for drowsiness detection using machine learning
and deep learning approaches, there remains ample room
for further research to address the limitations and enhance
the practicality, accuracy, and scalability of the developed
system
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