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Abstract: Radiomics allows for measuring tumour heterogeneity, discovering prognostic biomarkers, early detection and diagnosis, and
combining with machine learning to improve clinical decision-making. Radiomics is essential for obtaining quantitative characteristics.
From medical pictures, such as those acquired from radiological scans such as MRI, CT, or PET scans, our study intends to enhance
diagnostic accuracy by utilizing machine learning models such as Logistic Regression, Support Vector Machines, Decision Trees,
Random Forests, Multilayer Perceptron, and XGBoost and then applying dimensionality reduction approaches like PCA, SVD, and
NMF to examine radiomics characteristics collected from breast cancer images, improving early breast cancer detection. These ML
models are powerful classification and predictive analytics models, while dimensionality reduction techniques simplify complex datasets
by reducing features, improving visualization, and minimizing noise. The proposed method comprehensively evaluates the accuracy
using train-test data with 20% as test data, showing significant enhancements in diagnostic accuracy for early-stage breast cancer
compared to conventional methods. The proposed model has an accuracy of 88.72% as compared to recent works. The high accuracy
of our model shows that it could be used to find cancer early, which is important for getting treatment right away. Some limitations
include that imaging methods aren’t always the same, sample numbers are too small to be useful in real life, computing costs are high,
and Clinical validation is needed. Future studies should focus on bigger studies to make them more reliable. These studies should
combine genomic data with radiomics to get a fuller picture.
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1. INTRODUCTION
Breast cancer is a serious worldwide health concern, re-

quiring accurate and prompt diagnostic techniques for suc-
cessful treatment and better patient outcomes [1]. The ad-
vent of radiomics, an innovative field leveraging quantitative
analysis of medical images, has shown promising prospects
for augmenting traditional diagnostic methodologies.[2].
Radiomics permits the acquisition of intricate details from
radiological pictures, allowing the discovery of subtle pat-
terns and traits that would otherwise evade eye scrutiny
[3]. In this respect, our investigation goes into the domain
of breast cancer detection, concentrating on the integration
of radiomics and modern computational tools to enhance
the classification process. The richness and complexity of
radiomics features extracted from various imaging modal-
ities offer a comprehensive representation of tissue char-
acteristics, aiding in the characterization of breast lesions
and tumor behavior[4]. However, the sheer volume and
intricacy of these radiomics features pose challenges, often

leading to high-dimensional datasets. This abundance of
information can potentially introduce noise, redundancies,
and computational inefficiencies, hindering the development
and deployment of robust classification models. Hence, the
application of dimensionality reduction techniques emerges
as a pivotal strategy to distill crucial information while
mitigating computational complexities [5]. There is a lack
of research in effectively combining statistical analysis,
clinical analysis, decision support systems, and factors that
impact the classification of early-stage breast cancer diagno-
sis. Existing methods frequently lack a cohesive approach,
resulting in potential inefficiencies in diagnosing and treat-
ing medical conditions. This is because deep learning solely
focuses on image classification, which is insufficient in the
field of medical science [6]. Medical professionals require
information on the factors that cause cancer, making a deci-
sion support system vital for the patient’s well-being. There-
fore, by correcting this deficiency, it is possible to improve
the accuracy of diagnosis and provide more precise instruc-
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TABLE I. List of Abbreviation

S/N Keyword Full form
1 BC Breast Cancer
2 ML Machine Learning
3 PCA Principal Component Analysis
4 SVD Singular Value Decomposition
5 NMF Non-negative matrix factorization
6 DR Dimensionality Reduction
7 SVM Support Vector Machine
8 WBCD Wisconsin Breast Cancer Database
9 RF Random Forest
10 DT Decision Tree
11 MLP Multilayer Perceptron
12 ANN Artificial Neural Networks
13 KNN K-Nearest Neighbor
14 CM Confusion Matrix
15 XGBoost Extreme Gradient Boosting

tions for preventive measures, ultimately leading to better
patient outcomes. This integration would guarantee that
medical professionals had a comprehensive comprehension
and powerful instruments for the early identification, en-
abling prompt and efficient therapies. This research aims to
investigate the efficacy of various dimensionality reduction
methodologies in enhancing breast cancer diagnosis based
on radiomics features. Dimensionality reduction techniques
aid physicians in identifying subtle malignancy patterns
in mammograms, ultrasounds, and MRIs by simplifying
intricate, multi-dimensional medical images while retaining
all relevant information. By condensing the feature space
while preserving diagnostically relevant information, our
endeavor seeks to optimize classification models, enabling
more accurate and interpretable outcomes.

A. Contribution:
The research is motivated by the need to overcome

the limits of current breast cancer diagnostic methods and
utilize the promise of radiomics for early diagnosis.

• The research used 780 pictures from the UCI Ma-
chine Learning Repository to pull out 120 radiomics
features. These included important features like Run-
Variance, RunEntropy, Energy, Elongation, and Mi-
norAxisLength.

• When dimensionality reduction (DR) methods were
not used, the Random Forest (RF) model got 85.04
percent accuracy with 44 features and the Multi-layer
Perceptron (MLP) model got 85.47 percent accuracy
with 78 features.

• When Non-negative Matrix Factorization (NMF) was
used, the XGBoost (XGB) model got 87.18 percent
accurate with 78 features and 88.72 percent accurate
with 44 features. The MLP model got 85.64 percent
with 78 features and 86.67 percent with 44 features
when Principal Component Analysis (PCA) was used.

• The XGB model got 85.64 percent with 78 features,
while the MLP model got 86.67 percent with 44
features. Overall, NMF combined with XGB gave
the best results, showing that DR methods greatly
improve model performance and diagnostic accuracy.

The remainder of the paper is explained in the following
manner: In Section 2, we talk about Related Work, which
compares and contrasts current studies in this area and
also talks about related research on breast cancer detection.
An explanation of the Method is given in Section 3 along
with a quick rundown of Radiomics, Methods Incorporated,
and DR Techniques. In Section 4, you can see what the
experiment showed. Section 5 talks about the Discussion,
the comparative analysis, the study’s limitations, and what
it all means. Section 6 wraps up the piece and talks about
its future scope.

2. Related work
In 2018, breast cancer (BC) accounted for the majority

of cancer related deaths among women in all of Europe
and was the most common kind of cancer among women
in all of Europe [7]. The author has conducted an extensive
analysis of machine learning in [8] to predict cancer and to
characterize compare and contrast deep learning methods.
In the publication [9], the author proposed a unique ap-
proach to predict the therapeutic response for breast tumors.
Advancements have been achieved in characterizing breast
cancer subtypes using radiological images. Based on their
molecular composition, several characteristics observed on
breast imaging tests such as MRIs, mammograms, and
ultrasounds can be associated with distinct forms of breast
cancer [10]. The major goal of the paper [11] was to
offer an effective approach for identifying cancers utilizing
mammography pictures of breasts and an ML algorithm.
Second, based on the proposed strategy in the first phase,
this investigation aims to develop a CAD program for
the detection of BC. The Author [12] just explored Ra-
diomics as an overview through Machine learning & Deep
Learning on Breast cancer mainly. Currently, physicians
receive assistance in analyzing these images via CAD
systems. CAD (Computer-Aided Diagnosis) refers to soft-
ware applications used in healthcare to support medical
professionals in analyzing medical imaging data and patient
information [13]. These applications can -highlight potential
abnormalities, suggest diagnoses, and provide additional
information. Medical imaging is critical for the diagnosis,
staging, therapy planning, postoperative monitoring, and
response evaluation in the routine care of cancer [14].
Among the different breast cancer imaging modalities,
Magnetic Resonance Imaging (MRI) has higher sensitivity
in lesion identification, possibly due to its multi-parametric
character, which includes features such as T1-weighted
and diffusion-weighted imaging [15]. However, it is crit-
ical to recognize the limits of individual modalities and
use a multi-modal approach, which may include methods
such as mammography and ultrasound, as well as clini-
cal data and AI-powered analysis, for thorough diagnosis
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and risk assessment [16]. The authors in the paper [17]
used machine learning techniques to create a preoperative
axillary lymph nodes (ALN) status assessment approach
based on MRI radiomics characteristics. This technique
sought to improve the preoperative assessment process
for targeted therapies. The study sought to investigate
the potential link between radiomics characteristics and
the tumor microenvironment (TME) in individuals with
early-stage invasive breast cancer. This objective could
be computationally addressed by 1) extracting quantitative
radiomics features from the acquired MRI images using
image analysis software or libraries like PyRadiomics or
Radiomics R package [18], 2) employing machine learning
models such as correlation analysis, SVMs, or RFs to
identify statistically significant relationships between the
extracted features and TME characteristics [19], and 3)
visualizing the identified relationships using dimensionality
reduction. The author [17] demonstrated how radiomics
features improve clinical decision-making and how several
machine learning classifiers, together with numerous feature
selection strategies, reliably predict breast cancer nodules.
The author has provided a concise overview of the current
advancements in breast cancer research that utilize the ra-
diomics approach [20]. The proposed radiomics fusion algo-
rithm is utilized to categorize the chosen characteristics into
malignant and benign [21]. Comparative studies in breast
cancer detection assess the efficacy of various imaging
modalities, technologies, or procedures for early diagnosis,
screening, and characterization of breast abnormalities[22].
They demonstrated that MRI machine learning radiomics
can predict how long breast cancer patients will live without
return after surgery and measure lncRNAs without surgery.
This method can make good predictions, but it might need a
big set of data to learn on [23], [24]. The strength is that the
Stacking model performed better than the others. However,
one weakness is that the AUCs for some individual models
were lower than those for others [25]. These models are
being used in mammography, ultrasonography, and MRI,
among others, to diagnose and assess risk. However, there
are problems that make it hard for AI to be widely used in
clinical practice, such as the need for strict validation, in-
terpretability, and technical considerations [26]. AI systems
detect tiny abnormalities, decipher ambiguous images, and
perform quantitative analysis, improving imaging accuracy,
but they require substantial validation, data standardization,
regulatory compliance, and ethical consideration. Table II
compares the increased benefit of radiomics analysis in
breast cancer detection to standard imaging approaches.

3. Methods
This section will thoroughly examine the dataset, includ-

ing details on its structure, Preprocessing techniques, and
feature extraction methodologies to be used. A flowchart
of the methods for anticipating breast cancer (BC) will be
shown. The suggested classification model uses a variety
of approaches, including Logistic Regression (LR), Support
Vector Machines (SVM), Decision Trees (DT), Random
Forests (RF), Multi-Layer Perceptron (MLP), and XGBoost.

The dataset features will be analyzed using PCA, NMF, and
SVD, as shown in Figure 1. The scientists used a Kaggle
dataset containing breast cancer imaging data, which in-
cluded a large number of cases representing various kinds
and stages of breast cancer, as well as healthy controls.

A. Preprocessing
The data that was collected at the beginning of the study

includes examples of breast ultra-sounds that were taken
from women ranging in age from 25 to 75 years old. The
total number of patients includes 600 female patients out of
the total number of patients. Each of the 780 photographs
that are included in the collection of data has an average
size of 500 pixels by 500 pixels. Additionally, there are
437 benign images, 210 malignant images, and 133 normal
images. PNG is the format that the images are in for the
most part. It is essential to execute data pre-processing
in order to ensure that data quality issues, such as noise,
inconsistencies, and redundancy, are minimized, which ulti-
mately results in improved performance of machine learning
models [37]. The techniques of missing value imputation
were utilized in this particular instance. While missing
values for categorical features were imputed using the
mode, missing values for numerical attributes were imputed
using the median of their respective feature distributions.
Mean was used to impute missing values for numerical at-
tributes. https://www.kaggle.com/datasets/aryashah2k/breast-
ultrasound-images-dataset [38]

B. Feature Extraction
Image features are the essential attributes that are em-

ployed to analyze and perceive it. These characteristics can
be derived to discern distinctive qualities within the image
data. To classify images based on specific characteristics, it
is necessary to extract these characteristics from the dataset
of images. Providing an exact description of visual qualities
is not feasible; however, size, form, and other characteristics
serve as the first foundations of these properties. These traits
encompass characteristics such as tumor texture, shape, and
intensity. Currently, our algorithms play a crucial role in
capturing these patterns, which are vital for the detection
and diagnosis of breast cancer. Its aid enables the enhance-
ment, retrieval, visualization, and recognition of images. We
have processed images using Python’s Scikit-Image. The
libraries are responsible for performing tasks such as seg-
mentation, color space modification, analysis, morphology,
feature detection, and other skills. Advanced computational
equipment can efficiently extract diverse quantitative data
from tomographic pictures, including CT, MR, PET, and
other types. Radiomics refers to the transformation of
medical pictures into high-dimensional data.

C. Radiomics
Radiomics is an evolving field within Medical imag-

ing that encompasses retrieving and examining quantita-
tive characteristics from radiographic images [39]. It goes
beyond traditional visual assessment by using advanced
computational methods to capture a large amount of data
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TABLE II. Various Comparative Studies of Breast Cancer Detection

Dataset detail Classifier / Methods Dataset Radiomics Accuracy
UCI (80% training and
20% testing), 2022 [27]

DT, RF, K-NN,
ANN, SVM & LR 116 Samples No 64

MIAS Dataset (242 training and
82 testing) 2022 [28] SVM 324 samples No 87.1

BIACH and RI
(80% Training and 20% Testing)

2023 [29]

XGBoost, LR, KNN,
DT, RF, SVM, 1449 samples No 83

CESM Image
(80% Training images and

20% Testing images) 2019 [30],
SVM classifier 51 Samples Yes NA

Real data
70% Training images and

30% Testing images) 2018 [31],
NB 331 Chinese

women data Yes 79.6

ACRIN
(203 Training images

and 50 Testing images) 2023 [32],
CNN 253 patients No 87.7

Real Data
(90 Training images and

21 Testing images)2022 [33],
SVM 111 patients Yes 91

HER2 overexpressing breast cancer patients
(249 Training images and

62 Testing images)2020[34].
HER2 expression 311 patients. Yes 89.7

Real data Jan 2017 to Feb 2019
(80% Training images and

20% Testing images)2021[35],

DECT iodine
map-derived

radiomics signatures
77 patients Yes 92.6

Real data Jan 2018 to Dec 2018
(80% Training images and

20% Testing images)2020 [36],
TIL levels 43 Patients Yes 74.4

from medical images, such as CT scans, MRI, or PET
scans. These data include shape, intensity, texture, and
spatial relationships of pixels or voxels within the images.
Radiomics contributes to a better knowledge of the intricate
properties of tumors and can potentially deliver significant
insights [40]. This technique has been used to the field
of cancer with the goals of improving prognostic factor
evaluation, improving diagnostic accuracy, and aiding in
clinical decision-making. The radiomics method calculates
the scalar values of the features from the predefined ROI
(Region of interest) [41]. Once the lesions are segmented,
feature extraction is carried out using radiomics. In the
proposed models, Radiomics statistics have been used to
extract different categories of features [42] from the ROI of
Breast Cancer images. Therefore, a total of 78 features are
extracted, and the radiomics features are normalized to the
0-1 range. Various features are calculated as:

Energy =
Np∑
j=1

(Y( j) + a)2 (1)

In image processing, ”energy” refers to a statistical

measure of the distribution of voxel values in an image.
It measures the voxel values’ magnitude, representing the
overall intensity variance within the picture. Higher energy
levels suggest more high-intensity voxel values are concen-
trated in the picture, which suggests more overall contrast
and variety.

S kewness =
1

Np

∑Np

j=1(Y( j) − Ȳ)3

(
√

1
Np

∑Np

j=1(Y( j) − Ȳ)2)3

(2)

Skewness is used to quantify how asymmetrical attribute
values are distributed concerning their mean. It evaluates
how far the distribution deviates from symmetry concerning
the mean value. Positive skewness means the distribution
has a longer or fatter tail toward higher attribute values, with
most values left of the mean. Negative skewness indicates
a longer or fatter tail toward lower attribute values, with
most values to the right of the mean. A fully symmetric
distribution with mirror-image tails has a skewness of zero.
Skewness can be positive (right-skewed) or negative (left-
skewed), with 0 skewness indicating perfect symmetry.
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Figure 1. Flow diagram of the proposed approach

Kurtosis =
1

Np

∑Np

j=1(Y( j) − Ȳ)4

(
√

1
Np

∑Np

j=1(Y( j) − Ȳ)2)2

(3)

Kurtosis measures a probability distribution’s peaked-
ness and tail extremity compared to a normal distribution.
Calculated using the fourth standardized moment, it shows
the distribution’s extreme outlier propensity. Mésokurtic
(normal kurtosis, value around 3), leptokurtic (high kurtosis,
value greater than 3, indicating fatter tails and a sharper
peak), and platykurtic (low kurtosis, value less than 3). Less

than 3 excess kurtosis is used to compare to the normal
distribution, with positive values indicating leptokurtic and
negative values platykurtic distributions. In finance and
quality control, this measure helps estimate risk and spot
abnormalities.

S phericity =
2
√
πA

P
(4)

The ratio of the tumor region’s perimeter to the diameter
of a circle with a surface area equal to the tumor region’s
is known as sphericity. This metric evaluates how much the
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tumor area resembles a spherical. Interestingly, sphericity
is a dimensionless measure that is unaffected by changes
in orientation or size. It is said to be spherical when the
differences between all pairs of groups (or levels) have the
same variation.

Ma jor axis length = 4
√
λminor (5)

This element, which is calculated using the largest head
portion, produces the largest hub length of the ROI-encasing
ellipsoid λma jor.

Elongation = 4

√
λminor

λma jor
(6)

The ROI shape’s elongation illustrates the relationship
between its two largest head segments.

Di f f erence Entropy =
Ng−1∑
c=0

cpm−n(c)(px(a)py(b) + ϵ)

(7)

Difference Entropy is a proportion of the irregular-
ity/fluctuation in neighborhood power esteem contrasts.

Contrast =
Ng−1∑
a=1

Ng−1∑
a=1

(a − b)4 p(a, b) (8)

Contrast is a proportion of the nearby power variety,
preferring values from the inclining (a=b). A bigger worth
connects with a more noteworthy dissimilarity in force
esteems among adjoining voxels.

CP =
Ng−1∑
a=1

Ng−1∑
a=1

(a + b − µm − µn)4 p(a, b) (9)

CP is defined by the evaluation of the asymmetry and
skewness of the GLCM.

GLNU =
∑Ng

a=1(
∑Ns

b=1(a − b)4 p(a, b))2

Nz
(10)

GLNU, short for Gray-Level Non-Uniformity, is a ra-
diomics characteristic obtained from the examination of
medical imaging. The measure quantifies the range of gray
levels in an image, indicating the diversity of textures
within a specific area of interest. Elevated GLNU levels
imply increased heterogeneity, which may be linked to

intricate tissue architectures or pathological conditions such
as malignancies.

LGLZE =

∑Ng

a=1(
∑Ns

b=1
P(a,b)

a2

Nz
(11)

LGLZE estimates the circulation of lower Gray level
size zones, with a higher worth showing a more noteworthy
extent of lower dim level qualities and size zones in the
picture. Low Gray-Level Zone Emphasis (LGLZE) is a
radiomics feature utilized in the examination of medical
pictures to measure the dispersion of low gray-level zones
inside a specific area of interest. LGLZE quantifies the ratio
of low-intensity regions to the overall number of zones in
an image.

S ZNUN =
∑Ng

a=1(
∑Ns

b=1(a − b)4 p(a, b))2

N2
z

(12)

Short-Zone Non-Uniformity Normalized (SZNUN) is a
radiomics feature that is calculated using the Gray-Level
Size Zone Matrix (GLSZM). The statement describes the
process of measuring the proportion of small, uniform areas
within a picture compared to the overall volume of the
image while taking into account the total number of these
areas. This characteristic quantifies the degree of variation
in small areas with a particular intensity level, offering
valuable information on the consistency of texture within
a specific region of interest.

DNUN =
∑Nd

b=1(
∑Ng

a=1(a − b)4 p(a, b))2

N2
z

(13)

DNUN Measures the analogy throughout the image,
with a diminished value signifying homogeneity with de-
pendencies in the image. The Difference of Normalized
Uniformity (DNUN) is a radiomics characteristic that mea-
sures the level of uniformity within a given region of interest
in a medical image, taking into account a specific method
for normalization. It quantifies the differences in gray-level
patterns, providing valuable information on the texture and
diversity of the tissue under examination.

GLV =
Ng∑

a=1

Nd∑
b=1

P(a, b)(a − µ)2 (14)

Gray-level variance (GLV) is a radiomics characteristic
that measures the amount of variation in the intensity of
gray-level values inside a specific area of interest in medical
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pictures. This metric quantifies the level of diversity or
variety in texture within the tissue under examination.

DV =
Ng∑

a=1

Nd∑
b=1

P(a, b)(b − µ)2 (15)

DV measures the variance in dependence size in the
image. In the field of radiomics and radiation therapy, the
abbreviation ”DV” commonly refers to ”Dose Volume,”
specifically in relation to Dose-Volume Histogram (DVH).
The Dose Volume Histogram is an essential tool used in
the planning and evaluation of radiation therapy.

Coarseness =
1∑Ng

a=1 xaya

(16)

The coarseness of an individual voxel indicates the rate
at which it is changing within its neighborhood. Greater
values indicate lower spatial change rates and a local texture
that is more uniform.

Busyness =
∑Ng

a=1 xaya∑Ng

a=1(
∑Ng

b=1 |axa − bxb|)
(17)

An indication of how a pixel differs from its neighbor.
Busyness is a measure of the rapid pixel and neighborhood
intensity adjustments in an image. High values indicate a
busy image.

S trength =
∑Ng

a=1
∑Ng

b=1(xa + ya)(a − b)2∑Ng

a=1 ya

(18)

An image’s strength refers to its primitives. The intensity
of the primitive is high when it is easily distinguished and
observable, e.g., a still image with many coarse variations
in gray levels but slowly changing intensity.

RV =
Ng∑

a=1

Nr∑
b=1

P(a, b|θ)(b − µ)2 (19)

The variance of runs for run lengths is defined as RV.
RV stands for the three-dimensional area of interest (ROI)
from which radiomics features are derived. The volume in
question refers to a specific structure within the body, such
as a tumor, organ, or other object of interest. It is examined
using imaging techniques like CT, MRI, or PET scans.

RP =
Nr(θ)

Np
(20)

In RP, the ratio between the number of runs and the
number of voxels in the ROI is used to quantify the
coarseness of the texture.

S RE =

∑Ng

a=1
∑Nr

b=1
P(a,b|θ)

b2

Nr(θ)
(21)

A greater value indicates a shorter run length or finer
texture. SRE measures the distribution of short-run length.

D. Feature Analysis
Feature analysis, feature engineering, and feature selec-

tion are all words that refer to the same procedure inside the
machine learning process, and they are all vital components
[43]. The work involves choosing, modifying, or creating
relevant features (also known as input variables or char-
acteristics) from unprocessed data to improve a machine
learning model’s performance. A radiomics approach for
statistical analysis can result in quicker training times, more
accurate and efficient models, and a deeper comprehension
of the underlying data. Radiomics analysis, which involves
deriving a great deal of quantitative data from pictures, is
a rapidly developing field in medical imaging. Subsequent
analysis of these attributes can yield significant insights into
the fundamental biology of the tissue under observation.
A growing area in medical imaging called ”radiomics
analysis” deals with taking a wealth of quantitative data
out of pictures. These features that were retrieved capture
different aspects of the tissue that were scanned and provide
important information about its basic biological properties.
By using extensive imaging data, radiomics has shown to
have significant potential in improving diagnosis, prognosis,
and treatment planning for breast cancer.

1) DR
Dimensionality reduction (DR) algorithms are important

in machine learning because they allow for the translation
of high-dimensional data into lower-dimensional spaces
while retaining crucial information [44]. This technique
has various advantages, including reduced data complexity,
enhanced computational efficiency, simplified model archi-
tecture, and effective rule construction.
Non-negative Matrix Factorization (NMF) is a technique
for data analysis that is distinct from SVD [45]. Unlike
SVD, NMF splits a data matrix into two matrices that only
include non-negative values. This characteristic makes NMF
especially helpful for tasks like image processing and text
mining, where negative values may not be significant.

PCA is a widely utilized dimensionality reduction tech-
nique in machine learning (ML) and data analysis. Its
primary objective is to project a high-dimensional dataset
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(X) onto a lower-dimensional subspace while capturing the
most significant variance in the original data.

Centering the Data: Before computing the covariance
matrix, the data needs to be centered by subtracting the
mean of each feature from its corresponding values in each
sample. This removes the influence of the mean and ensures
values are centered around zero, improving the accuracy of
the covariance calculation.

Covariance matrix calculation: The covariance matrix
(
∑

) is a square matrix of size n x n, where each element
∑

i j
represents the covariance between the i-th and j-th features.
The formula for calculating the covariance between features
i and j is:

cov(Featurei, Feature j) =

1
n − 1

n∑
k=1

(Featureki − µi)(Featurek j − µ j) (22)

This computation yields a covariance matrix of size
m x m, which is denoted by

∑
and is very significant

in the study of breast cancer. In the context of breast
cancer, an eigenvalue decomposition was performed on the
covariance matrix

∑
, which is unique to the dataset of breast

cancer. This process entails identifying the eigenvectors and
eigenvalues. Within this particular framework, the eigenvec-
tors serve as significant orientations, commonly known as
principal components, while the related eigenvalues show
the extent of variability along these orientations.∑

v = λv (23)

Here, v signifies an eigenvector and λ represents the
eigenvalue. Principal component selection in the context of
breast cancer: The eigenvalues were arranged in decreasing
order, and the matching eigenvectors indicate the major
components that are specific to the breast cancer data.
The determination of the number of primary components
to keep is influenced by multiple criteria, including
those about the explained variance, which hold particular
significance in the context of breast cancer study.

Singular Value Decomposition (SVD):One of the DR
effective methods known as SVD divides a matrix into three
smaller matrices. This makes the data’s hidden structure
visible, which facilitates comprehension and analysis. Tasks
like dimensionality reduction, data compression, and finding
odd patterns in the data can all benefit from the usage of
SVD. Three matrices are involved in the decomposition: a
diagonal matrix with singular values on the left, a right sin-
gular matrix, and a left singular matrix [46]. The technique
has significant importance in many domains, including but
not limited to data compression, DR, signal processing,
and ML. SVD decomposes a matrix into three simpler

matrices, revealing the underlying structure and important
characteristics of the original matrix. To decompose any
matrix Cnxd, we employ three matrices which are Unxn,∑

nxd, and Vdxd. U and V are orthogonal matrices. The
matrix

∑
is a non-negative diagonal matrix belonging to

the set of real matrices. Mathematically, the Singular Value
Decomposition (SVD) factorizes a given matrix C in the
following manner:

C = UΣVT (24)

Non-negative Matrix Factorization (NMF): Non-
negative Matrix Factorization (NMF) is a technique for data
analysis that is distinct from SVD [45]. Unlike SVD, NMF
splits a data matrix into two matrices that only include non-
negative values. This characteristic makes NMF especially
helpful for tasks like image processing and text mining,
where negative values may not be significant.

This is how it works mathematically. Given a non-
negative data matrix X, NMF seeks to identify two smaller
matrices, W (m x r) and H (r x n), where r is typically
smaller than m and n, given a non-negative matrix X of
size m x n. W and H each containing only non-negative
values. This factorization aids in the extraction of hidden
patterns and characteristics from the data. When considering
factorization:

X ≊ WH (25)

Here X is the initial non-negative matrix that needs
to be factorized. Matrix W is a non-negative matrix with
dimensions m x r. Each column in matrix W represents a
fundamental vector, and these fundamental vectors are used
to approximate the data in matrix X. H is a matrix of size r
x n, where r and n are non-negative values. The columns of
matrix H correspond to the coefficients of the basis vectors
in matrix W that are utilized to rebuild the columns of
matrix X. The objective of NMF is to choose optimal values
for matrices W and H, such that their multiplication yields
an approximation of the original matrix X that is as near
as possible while guaranteeing that all members in W and
H are non-negative.

E. Methods Incorporated
This section provides a high-level overview of the clas-

sifier. Logistic Regression (LR) is a popular choice for its
simplicity and interpretability. It leverages linear regression
principles to estimate the probability of an outcome, making
it suitable for both binary and multiclass classification
tasks [47]. Decision Trees (DT) are non-linear models that
recursively split the feature space based on thresholds,
creating hierarchical structures for decision-making, and
are easily interpretable, and capable of handling diverse
data types [48]. Support Vector Machines (SVM) create
optimal hyperplanes to separate classes in high-dimensional
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space, excelling in complex classification tasks through
maximizing the margin between different classes [49].
Random Forest (RF) is an ensemble learning approach
that integrates predictions from many decision trees. This
method minimizes overfitting by utilizing different trees
trained on random subsets of data and characteristics. Be-
cause of its parallelizability and ability to capture intricate
correlations within data, RF is highly suited for dealing
with massive datasets [50]. Multilayer Perceptron (MLP),
a neural network, learns complex patterns through layers
of nodes with non-linear activations, suitable for non-linear
relationships [51]. XGBoost, an extreme gradient boosting
technique, sequentially builds an ensemble of weak learners
to correct previous models’ errors, offering high predictive
accuracy and robustness to missing values [52].

F. Performance Analysis
Classification utilizes assessment metrics such as Ac-

curacy, Precision, Recall, Specificity, and F-measure. The
components of CM, which furnish information regarding
anticipated and realized results, are employed to formulate
these metrics. The equations provided represent the per-
formance metrics in real-world scenarios. True Positive is
denoted as TM (True Malignant), while True Negative is
denoted as TB (True Benign). Equations:

Accuracy =
T M + T B

T M + T B + FM + FB
(26)

Recall =
T M

T M + FB
(27)

Precision =
T M + T B

T M + T B + FM + FB
(28)

F1S core =
2 × Precision × Recall

Precision + Recall
(29)

S peci f icity =
T N

FP + T N
(30)

4. Experiment and Result Analysis
The dataset, comprising 780 images taken from the UCI

Machine Learning Repository, underwent a comprehensive
analysis to extract a multitude of radiomics features from
medical images. In this study, we investigated the influence
of feature extraction techniques extracted breast cancer
images on the accuracy of breast cancer detection. Since
radiomics features are 120 features grouped into different
categories, we applied DR techniques to further improve
the proposed models. Some of the prominent radiomics
features by their entropies are RunVariance, RunEntropy,
Energy, Elongation, and MinorAxisLength. The subsequent
reduction of feature dimensionality aimed to improve the
efficiency and interpretability of the diagnostic process.
Finally, we trained firstly ML models which are LR, SVM,

RF, DT, MLP, and XGboost without DR techniques on 78
features selected only, and we got maximum accuracy on
MLP which is 85.47% as shown in figure 2. Again, we
have done the same procedure on Reduced features which
is only 44 Features, and we can see in figure 2 that the
RF model achieved the best accuracy as compared to other
models which is 85.04%. Now we used DR techniques
on the same models, and we got the best accuracy on
XGB with NMF which is 87.18% as compared to other
models, only using 78 features selected which is shown in
figure 3. Again, the same procedure followed only used 44
features (Some features reduced) then we analyzed here the
Accuracy improved as compared to 78 features on the same
model which is XGboost, the accuracy is 88.72% but some
other models are also varied, and some models gave the
same accuracy as showed in figure-3. Again, we incorporate
another DR technique which is PCA on the same models
and the Initial 78 features selected and after reducing the
feature, we observed that the best accuracy provided by
MLP as compared to other models which are 85.64% and
86.67% respectively on the initial 78 features selected and
after reducing feature as shown in figure 5. Finally, we
applied the 3rd DR Technique on all models which is SVD,
and we got here again best accuracy on other models as on
the initial 78 features selected XGboos provided a better
result which is 85.64% as shown in figure 4 and again when
we reduced features just selected 44 features we got best
accuracy on MLP again which is 86.67% as shown in figure
4.

A. Software Tools and Technique
We have employed Jupyter Notebook and Numpy, which

support large multi-dimensional arrays and matrices and
contain mathematical functions for array manipulation were
used. For Data Framing and Series for easy and efficient
structured data management used Pandas. Matplotlib can
create line plots, scatter plots, bar charts, and histograms,
whereas Sea-born has a sophisticated interface for creating
attractive and instructive statistical graphics. PyRadiomics
uses SimpleITK for image processing, Scipy for mathemat-
ical functions, and PyWavelets for wavelet transformations
to efficiently extract quantitative radiomics features from
medical pictures in Python. The software efficiently analy-
ses medical images and masks specifying regions of interest
(ROIs) to extract form, first-order statistics, and texture
metrics like GLCM and GLRLM. Scikit-Learn supports
regression, classification, clustering, and dimensionality re-
duction for machine learning models. It is designed to work
smoothly with NumPy and Pandas, making it a flexible and
easy-to-use tool for building and testing machine-learning
models.

5. Discussion
Our study’s primary goal was to assess the impact of

feature extraction approaches on breast cancer detection
accuracy. Examining the selected radiomics characteristics,
such as RunVariance, RunEntropy, Energy, Elongation, and
MinorAxisLength, found that they all contribute signifi-
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Figure 2. Comparison Accuracy all Models without DR

cantly to increased diagnostic accuracy. These traits require
further investigation as possible indications of breast cancer.

Table III summarises our findings, including all of the
models assessed and the highest accuracy ratings for each
characteristic. The findings include the performance of
models employing the initial set of 78 features and a subset
of 44 features retrieved using several classifier algorithms
(LR, SVM, RF, DT, MLP, and XGBoost).

Figure 6 shows a graphical depiction of the performance
of all models. We plotted a graph of all models and finally,
the best accuracy in all models through the DR technique
is XGboost with 88.72%.

The proposed methodology for breast cancer detec-
tion demonstrates significant improvements in accuracy
compared to existing methods which is shown in table
IV. Through a comprehensive comparative analysis, it is
observed that the proposed approach integrates advanced
radiomics features and takes advantage of a more diverse
and accurate set of quantitative metrics extracted from med-
ical images. In contrast to traditional methods, the proposed
methodology includes machine learning algorithms that ef-
ficiently analyze complex patterns and relationships within
imaging data, enhancing the accuracy of lesion detection
and classification. The inclusion of innovative features, such
as texture analysis, shape descriptors, frequency domain
properties, etc., contributes to a more comprehensive un-
derstanding of breast tissue properties. Additionally, the
proposed approach embraces the power of artificial intelli-

TABLE III. Summarized results with all models.

DR
Techniques Model

With DR, Initial Features
=78

With DR, Initial Features
=44

Component Max
Accuracy Component Max

Accuracy

SVD

LR 12 0.8410 17 0.8462
SVM 10 0.8308 5 0.8308
RF 18 0.8513 12 0.8462
DT 41 0.8000 28 0.8051

MLP 16 0.8513 16 0.8667
XGBoost 20 0.8564 15 0.8615

PCA

LR 11 0.8359 18 0.8359
SVM 13 0.8308 8 0.8256
RF 17 0.8462 11 0.8462
DT 19 0.8103 14 0.8000

MLP 18 0.8564 17 0.8667
XGBoost 12 0.8513 28 0.841

NMF

LR 12 0.8410 10 0.8410
SVM 64 0.8462 16 0.8410
RF 5 0.8564 34 0.8615
DT 5 0.8256 17 0.8103

MLP 48 0.8513 27 0.8513
XGBoost 32 0.8718 13 0.8872

TABLE IV. Comparison of Existing approaches with proposed
approach

Author Classifier / Methods Dataset Radiomics Accuracy
Jing Zhou et al.
2021 [53] SVM 306 patients Yes 87

Isaac Daimiel
Naranjo et al.
2021 [54]

multiparametric
radiomics mode 93 Patients Yes 85

Mohamed A.
Hassanien et al.
2022 [55]

ConvNeXt network,
a deep convolutional
neural network (CNN)

31 malignant
and 28 benign /
3911 and 5245

Yes 87.17

JOONGYO LEE
at al. 2023 [56]

stacking model (SVM,
RF,LR)

MRI between
Jan’13 and Dec’17
were collected

Yes 78.4

Yingyu Lin
at al. 2024 [57]

Six Robust ML
models

268 Breast cancer
patients Yes 82.5

Yimiao Yu
at al. 2024 [58]

LR, SVM, RF
and XGB 329 images Yes 87.7

Proposed Approach LR, SVM,RF, DT, MLP
& XGboost with DR 780 Images Yes 88.72
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Figure 3. Result on NMF with two different features set

gence, enabling dynamic adaptation to evolving datasets and
improving its predictive capabilities over time. Comparative
studies highlight the superior performance of the proposed
methodology and showcase its ability to significantly raise
the accuracy of breast cancer detection, ultimately contribut-
ing to more reliable and timely diagnosis for improved
patient outcomes.

Our work assesses the diagnostic accuracy of ML mod-
els, particularly XGBoost, and dimensionality reduction
methods for early-stage breast cancer diagnosis. We use
radiomics characteristics and machine learning methods
to achieve 88.72% diagnostic accuracy on train-test splits
with 20% testing. Figure 7 shows the Receiver Operat-
ing Characteristic (ROC) curve analysis for the XGBoost
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Figure 4. Result on SVD with two different features set

model, proving its robust classification between benign and
malignant cases.

A. Ethical Implication
The combination of radiomics and machine learning has

significant potential for improving breast cancer diagnosis,
but it also presents various ethical concerns. A significant
issue is the preservation of patient privacy, given the utiliza-

tion of extensive datasets that contain sensitive information.
This requires the implementation of rigorous data protection
mechanisms to prevent the identification of individuals and
illegal access to the data. Moreover, algorithmic decision-
making biases might result in discrepancies in the accuracy
of diagnoses and recommendations for treatment among
various demographic groups. To reduce these biases, it
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Figure 5. Result on PCA with two different features set

is crucial to ensure that the training data is diverse and
representative and to continuously validate the model.

B. Significance of this study
The findings of our study improve the precision of

diagnostic procedures beyond current methodologies, es-
tablishing it as a highly promising instrument for the early
diagnosis of breast cancer. Our model demonstrates a poten-

tial to enhance patient outcomes by detecting and treating
conditions early, with an accuracy range of 80-90%, which
aligns with previous study findings. The exceptional preci-
sion of our machine learning model highlights its potential
incorporation into diagnostic protocols to aid radiologists in
detecting subtle abnormalities, hence improving breast can-
cer detection and diagnosis. The effectiveness of advanced
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Figure 6. Accuracy of all models with two feature sets for NMF, SVD, and PCA

Figure 7. ROC Curve

feature extraction approaches confirms the usefulness of
radiomics characteristics in offering precise quantitative
data, hence enhancing the accuracy of diagnosis. Our paper
demonstrates notable progress in the field of radiomics by
showing how machine learning approaches and dimension-
ality reduction techniques can improve the performance of
models and decrease the computing expenses for real-world
applications that involve complex imaging data.

C. Limitation
The findings of our study demonstrate that the utilization

of radiomics, machine learning, and dimensionality reduc-
tion techniques has the potential to enhance the accuracy
of breast cancer diagnosis based on medical imaging. Nev-
ertheless, there exist certain technical complications that

require resolution. Varying institutions may employ distinct
imaging techniques, apparatus, and patient cohorts, hence
influencing the efficacy and applicability of the model. If
the training datasets contain biases, these models may not
perform well when applied to a diverse community. There
may be instances in clinical settings where the necessary
computational capacity to utilize machine learning models
is not accessible. Moreover, the inherent complexity and
lack of comprehensibility of these models can impede
doctors from embracing and having faith in them.

6. Conclusion and Future scope
In this work, we explore the effectiveness of extracting

attributes using radiomics statistics from breast cancer im-
ages to improve cancer detection using machine learning
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approaches. Several crucial findings have evolved from
rigorous testing and research, considerably advancing breast
cancer detection and diagnosis. Our findings highlight the
relevance of feature extraction from radiomics data in
enhancing breast cancer detection. The capacity to extract
pertinent features such as RunVariance, RunEntropy, En-
ergy, Elongation, MinorAxisLength, etc. from complicated
radiomics data has enormous promise for improving di-
agnostic accuracy and assisting clinical decision-making
in breast cancer diagnosis. This study is a critical step
towards using sophisticated data-driven approaches to im-
prove breast cancer detection, resulting in more effec-
tive, accurate, and personalized cancer treatment strategies.
These findings open the door for creating more accurate
and effective categorization algorithms, allowing medical
practitioners to make more informed decisions, and perhaps
improving patient outcomes in breast cancer therapy.
In the future, researchers should ensure that our model
works on bigger, more varied datasets from multiple insti-
tutions. This will make it more generalizable and reliable.
AI-driven diagnostics will also be easier for clinicians
to understand and accept if interpretability methods like
SHAP values and decision trees are developed and used
together. Advanced dimensionality reduction methods, like
those based on deep learning, can help keep useful data
while lowering the amount of data that needs to be stored.
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