

http://dx.doi.org/10.12785/ijcds/1601126

A Comprehensive Review of Course Recommendation Systems for MOOCs

Mohd Mustafeez ul Haque¹, Bonthu Kotaiah² and Jameel Ahamed³

^{1,3}Department of CS & IT, Maulana Azad National Urdu University,Hyderbad, India ²Department of Computer Science, Central Tribal University of Andhra Pradesh, Vizayanagaram India

Received 18 Apr. 2024, Revised 28 Jul. 2024, Accepted 2 Aug. 2024, Published 1 Oct. 2024

Abstract: In recent years, many students have accepted Massive Open Online Courses (MOOCs) as a means of education. Due to the enormous number of courses available through MOOC, students need help in identifying and selecting an appropriate course based on their profile and interests. To address this issue, MOOCs incorporate a course recommendation system that generates a list of courses based on the student's prerequisites. This literature review attempts to detect and assess trends, processes employed, and developments in MOOC course RS through an exhaustive analysis of academic literature published between January 1, 2016, and November 31, 2023. The study includes the various methodologies employed, the datasets used for evaluations, the performance measures used, and the many issues encountered by Recommendation Systems. Literature published in ScienceDirect, Wiley, Springer, ACM, and IEEE, were chosen for review. After applying inclusion and exclusion criteria, 76 articles from the aforementioned databases, including journals, conferences, and book chapters, were selected. The investigation found that methods from Machine Learning and Deep Learning were widely deployed. Traditional approaches like "content-based filtering, collaborative filtering, and hybrid filtering" were frequently employed in conjunction with other algorithms for more accurate and precise suggestions. It also underlines the need to take data sparsity, the cold start problem, data overload, and user preferences into account when designing a course recommendation system. This paper contributes to examining the cutting-edge course Recommendation System in depth, examining recent developments, difficulties, and future work in this field.

Keywords: Recommendation Systems, Massive Online Open Courses, Content based Recommendation system, Collaborative based Recommendation system, Machine Learning

1. INTRODUCTION

This study conducts a systematic review of literature on Course Recommendation Systems for Massive Open Online Courses (MOOCs) from various academic sources, aiming to inform future research.

A. MOOCs(Massive Open Online Courses:)

In 2008, Stephen Downes and George Siemens of the University of Manitoba launched an online course called "Connectivism and Connective Knowledge," which attracted over 2,200 students. Since then, MOOCs have become a popular trend as e-learning platforms, allowing unlimited access to courses without limiting the number of students[1].Various strategies are used to manage MOOCs, such as connection MOOCs (cMOOCs), which are defined on the loosely developed connection theory, and contentbased MOOCs(xMOOCs), which employ a more cognitive approach[2]. Massive Open Online Courses (MOOCs) have significantly advanced in online learning and distance education due to their global reach and freedom of participation, setting them apart from standard e-learning platforms that have restrictions[3]. Massive Open Online Courses (MOOCs) offer students free access to entire courses, assignments, and lecturers. Students who excel receive certificates, which can be used to build a strong resume and showcase skills on professional networks[4]. MOOCs have significantly impacted the education sector by providing essential skills to underserved groups, increasing access to quality education, and encouraging innovation, presenting new possibilities and challenges[5]. In 2021, over 220 million students registered for courses on platforms like Coursera, edX, and MOOCs, with 40 million registrations, except for China enrollments. The University of Toronto's MOOC Impact Report for 2023 shows 4,200,000 students from 182 countries, earning nearly 300,000 course certifications. Challenges include cheating, obtaining academic admissions certificates, and showcasing skills in professional social networks[4], lack of attention towards the needs and expertise of the teacher[5], unable to offer proper courses in some technical course like computing to be specific in computer science stream[6], negligence on the personalized needs of the students[7].

E-mail address: mohdmustafeezulhaque@gmail.com, kotaiah_bonthuklce@yahoo.com, jameel.shaad@gmailtpand/journal.uob.edu.bh

1698

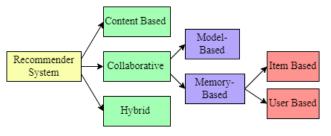


Figure 1. Classification of the Recommender System

B. Recommendation Systems:

Recommendation Systems use data from various sources to identify client preferences, with the user acting as the recipient and the recommended item as the product. Knowledge-based systems provide recommendations based on user-defined criteria, enabling more accurate predictions of future choices[8].Currently, recommender systems are seeing increased use in a wide range of applications, including medical sciences[9], Agriculture[10], online learning[7], tourism[11], movies[12], music[13], online shopping[14], news[15], specialized academic resources[16], etc. Recommender Systems fall into three categories:content-based, collaborative, and hybrid. Figure 1 demonstrates the classification of the Recommender System.

1) Content-Based

As shown in Figure 2, content-based RS employ personal user characteristics such as gender, age, and social media activities to anticipate their choices without referring to information about other individuals[17],[18]. Knowledge filtering tasks remove unwanted data from incoming streams, using item semantics and Information Retrieval concepts. Recommendations are created by comparing item content to an individual's profile, with associated weights, and this simple, efficient strategy has proven useful in classic Information Retrieval models.

2) Collaborative Recommendation System

Figure 2 shows a collaborative recommendation system that uses data to suggest content to a user based on their interests and preferences. The system calculates the user's resemblance to others, determining the effectiveness of the method based on the strength of the association between users or items[18],[19],[20]. A collaborative recommendation system assigns users to identical neighbors, who choose items based on their neighborhood's views. These systems can be categorized into memory-based (neighborhood-based or heuristic-based) and model-based techniques[21].

a) Model-Based

The model-based method involves incorporating ratings into predictions, using data collected from ratings to build a prediction model. The goal is to simulate useritem interactions using variables reflecting individual preferences and item classification. The model is trained on the current dataset and used to forecast user ratings for new products[17].There are many model-based approaches,

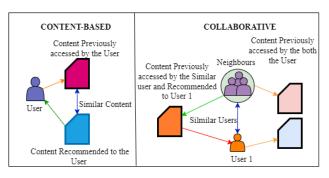


Figure 2. Content-Based and Collaborative RS

including Latent Semantic Analysis, Singular Value Decomposition, and Bayesian Clustering Singular Value Decomposition.

b) Memory-Based:

Memory-based methods use user-item ratings to anticipate categorization for new items, excelling in precision. Model-based methods are more efficient for large datasets. Classification can be done using user-based and item-based recommendations[18],[22].

c) User-Based method:

The user-based method filters incoming items based on ratings from previous community members who have assessed similar products. Users with similar interests are immediately recommended to others, creating a matrix of similarity ratings between users[20],[22].Consequently, the current user's rating of an item will be estimated according to the likes and dislikes of comparable neighbors.

d) Item-Based method:

The item-based method uses the items and Items matrix to store similarity ratings between items, suggesting goods most comparable to a collection of items with high ratings from the current user[18],[22]. The expected rating is established by the extent of similarity between an item and adjacent items, with a higher level of similarity resulting in a closer rating[23].

3) Hybrid Recommendation System:

The drawbacks of both collaborative and content-based methods can be overcome by combining them into a single hybrid approach[24].Richa Sharma[20] utilized a hybrid method to enhance performance, which involves analyzing user profiles to identify similar individuals and calculating similarity using the cosine equation based on user ratings, as illustrated in Figure 3[23]. Over the past two decades, researchers have developed recommendation algorithms using collaborative filtering and big data association rule mining. These algorithms determine similar users, select items based on user profiles, and offer desired items[25], RS for e-learning incorporating ontology and sequential pattern mining[26], a multi-criteria clustering approach[27], a hybrid collaborative filtering model with deep structure[28], combining similarity models with Markov chains[23],[29],and more.

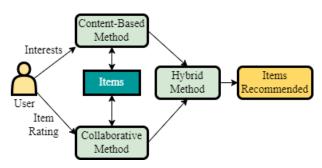


Figure 3. Hybrid Recommendation System

C. Recommendation System for MOOCs:

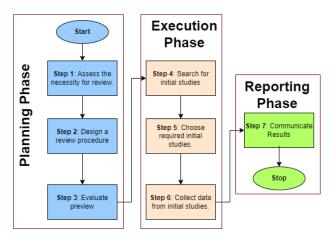
MOOCs collect data on learners' interests, activities, and course enrollments, which are used by recommender systems to provide personalized suggestions. These systems aim to streamline the process by utilizing user community perspectives and preferences, using collaborative filtering, content-based recommendation, or hybrid approaches[30]. Recommender systems in MOOCs aid users in finding suitable learning resources, enhancing MOOC design, converting traditional courses into internet-based formats, and analyzing student learning patterns[31]. The shift towards a more diverse educational model in MOOCs is hindered by a lack of skills to provide personalized experiences to diverse audiences[32]. The rapid growth of MOOC data presents challenges for users in selecting suitable courses for professional and educational growth. Course recommendations can help address this issue, but RS faces issues like data sparsity, anti-internet elements, and clod start while suggesting courses[31]. Machine learning and deep learning approaches, such as Latent Dirichlet Allocation (LDA) and K-mean clustering and Apriori algorithms, are being proposed to improve RS for MOOC learners[33], Courses Recommendation System Based on Learning Behaviours[7] Case Based Reasoning(CBR) techniques[34], Collaborative and Hybrid Filtering[28],[35],[36]etc. Research on recommendations primarily focuses on direct connection links, limiting the effectiveness of information representation and resulting in decreased recommendation quality and performance. The frequent sharing of information within social circles suggests that user preferences can be influenced by these networks[?]. The current state-of-the-art MOOCs Course RS utilize various machine learning and deep learning algorithms and frameworks to address the issues.

The study analyzed recommender systems in MOOCs from 2015-2023, focusing on English-language publications, to observe trends and explore unexplored categories, providing a comprehensive understanding of these systems.

2. METHOD

A. Review Method

The study utilized a Systematic Literature Review (SLR) to analyze MOOC Course Recommendation, a systematic method for identifying, evaluating, and interpreting research findings[37].Figure 4 provides a more comprehensive view.



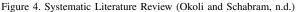


Figure 5. Mind Map of Review of MOOCs RS

B. Research Question (RQ)

Research Questions (RQ) enhance review process by focusing on concentration and consistency, often using "PICOC criteria (Population, Intervention, Comparison, Outcomes, and Context)"[38], which are listed in Table I.The mind map displayed in Figure 5 serves as a demonstration used in understanding research questions about the literature evaluation of RS for MOOCs.

TABLE I. PICOC CRITERIA

Population	MOOCS Course Recommendations		
Intervention	Methods used in MOOCs Course Recom- mendations		
Comparison	With existing systems traditional systems		
Outcomes	Performance evaluation of MOOCs Course RS		
Context	Research using online available datasets to provide better course recommendation		

C. Search Strategies

The data for this analysis of MOOC RS was gathered from articles available on sciencedirect.com, ieeexplore.ieee.org,dl.acm.org[39],and other academic databases of prestigious journals. To find articles relevant to the issue,the search entailed inputting particular keywords or synonyms related to the research topic.The search term used for this paper retrieval procedure was (MOOCs course recommendation system OR Course Recommendation System OR e-learning course

ID	Research Questions	Motivation
RQ1	Which journal or conference paper regarding MOOCs RS?	Recognize key re- search papers on RS on MOOCs.
RQ2	Which datasets are used in MOOCs RS	Recognize datasets frequently employed in RS for MOOCs
RQ3	What preprocessing techniques are em- ployed in MOOCs RS?	Recognize preprocessing techniques are employed in RS for MOOCs
RQ4	Which character- istics are used in MOOCs RS?	Recognize character- istics are used in MOOCs RS
RQ5	MOOC RS use?	Recognize strategies and approaches mostly used by MOOC RS
RQ6	What are the current issues with MOOC RS?	Recognize current is- sues in MOOC RS
RQ7	What approach and techniques are used in MOOC RS?	RecognizetheapproachesandtechniquesusedMOOC RS
RQ8	What assessment methodologies are used in MOOC RS?	Recognize the as- sessment methodolo- gies used in MOOC RS

recommendation system OR course recommender systems) AND (approach, methodology, or method).

The search phrase is optimized for title, abstract, and keywords, with adjustments made to meet the specific requirements of each database on individual sites[39]. The literature evaluation began in 2015 due to a significant increase in research activity on this particular topic.

This review study examines various publications, including journal articles, conference proceedings, and book chapters, to identify potential insights from conferences or continuing paper articles[39]. Papers only in the English language are considered.

D. Study Selection

The paper article search phase involves selecting multiple papers that meet requirements using an adjustment procedure. The criteria for incorporating paper articles in primary research are organized into five sections: keywords, period, sources, publishing format, and work category. Keywords are used to identify relevant published material from specific sources, while the timeframe relates to the actual era of article release.

The 'publishing format' refers to the type of publication,

TABLE III. INCLUSION AND EXCLUSION CRITERIA

	• Articles published in Journals and con- ferences of high im-
Inclusion Criteria	 pact Articles that have a well-defined motive, methodology, experimentation and results Articles which are relevant to the MOOCs Course RS Articles that have a well-defined motive,
Exclusion Criteria	 methodology Research that excludes experimental outcomes and relies on unclear datasets Studies that go beyond MOOC RS's Scope Research papers
	 Research papers written in languages other than English Unpublished stud- ies Review or survey articles

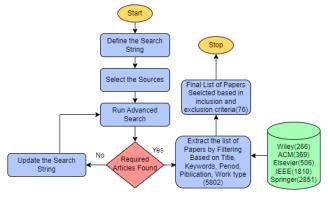


Figure 6. Search and Selection Mechanism

like conference papers or journal articles, while 'work category' describes the type of work mentioned in the article, like implementation, analysis, or proposal. Figure 6 illustrates a process for selecting relevant paper articles for further review.

E. Data Extraction

The data extraction phase involves collecting data from the primary study to address research inquiries. The data extraction table used is outlined in Table IV.

Research Question	Attribute
RQ1	Publications
RQ2	Datasets of MOOCs
RQ3	Preprocessing of MOOC datasets
RQ4	Features of MOOCs RS
RQ5	MOOCs RS strategies and techniques
RQ6	Problems with current MOOCs RS
RQ7	Techniques used in MOOC RS
RQ8	Evaluation methods used in MOOC RS

TABLE IV. ACQUIRING DATA

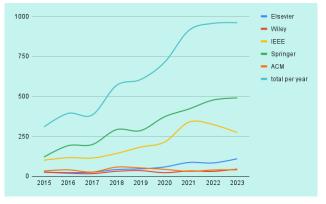


Figure 7. Publications in Journals and Conferences

3. FINDINGS

A. Publication of paper studies

Between 2015 and 2023, around 6000 publications on online learning platforms, primarily MOOCs, were published in prestigious journals and conferences. The annual distribution of articles indicates an increasing trend in research on MOOC course recommendations, indicating significant opportunities for future study. This trend is a result of the transition from traditional classrooms to online learning platforms. Figure 7 and Figure 8 depicts the annual trend of articles published on MOOCs recommendation system.

The study selected 76 papers for further review based on Table III's inclusion and exclusion criteria[40]. After filtering articles in Google Scholar, the researchers identified 76 papers from five academic databases: ScienceDirect, Springer, IEEE, ACM, and Wiley. Figure 9 shows the yearwise distribution of selected articles from these databases.

We have researched a variety of scholarly sources.

TABLE V. NUMBER OF ARTICLES PUBLISHED FROM 2015-2023

Publisher	Year							
1 ublisher	2016	2017	2018	2019	2020	2021	2022	2023
Science Direct	26	24	26	43	47	59	87	84
Wiley	27	20	17	32	36	23	34	31
IEEE	101	117	115	143	183	215	339	324
Springer	121	192	199	292	286	373	421	477
ACM	34	41	27	58	53	44	31	40

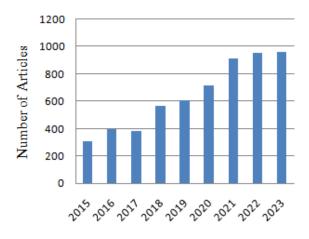


Figure 8. Total Papers Published per year

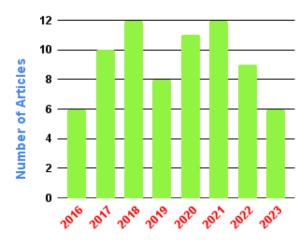


Figure 9. Yearwise Distribution of Selected Articles

■ Book Chapters ■ Conferences ■ Journals

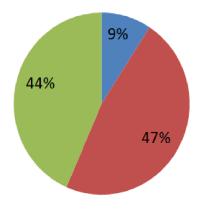


Figure 10. Distribution of Type of Papers

Specifically, we examined content from 7 book sections, 36 conferences, and 33 scholarly journals contributing 9%, 47% and 44% respectively, with a significant percentage of articles from Springer, various journals, and conference proceedings. Figure 10 shows the distribution of articles published in conferences, journals, and book chapters.

B. Dataset

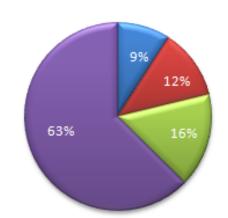
1702

Course RS for MOOCs heavily relies on datasets for development and assessment, including data about learners, courses, interactions, and other relevant aspects. These datasets often include student characteristics, course descriptions, subjects covered, difficulty levels, and ratings, as well as interaction data like learner-course exchanges, evaluations, and completion status.

The study of MOOC course recommendation (RS) employs datasets from various sources, including colleges, universities, educational websites, and research programs. Popular MOOC platforms like Coursera, edX, and XuetangX are used to investigate course suggestions, experiment with alternative algorithms, and assess RS performance. The XuetangX dataset, a Chinese MOOC platform, is the most frequently used in course recommendation methods design.

Other datasets contribute to numerous publications, but their individual use is limited. The majority of research is conducted on publicly available datasets from platforms like Coursera, edX, and XuetangX.

The other data set like Facebook[41], "European Expert Network on Economics of Education (EENEE")[42], "Network of Experts on Social Aspects of Education and Training(NESET)"[42], Canvas[34], Classroom data[43], university data[44], iCourse[7],[45], Khan Academy[30],[46],[47], kaggle[48], Udacity[24], [47], MovieLens[49][50][51], MOOCCourse[52],[53], MOOCCube[52],[53],[54],[55], [56], Coursetalk[35],[57] are to name a few that were used in different articles.



Coursera edX XuetangX Others

Figure 11. Distribution of Datasets Used in Articles

Figure 11 show the distribution of different datasets used in the different articles.

Addressing issues like data sparsity, heterogeneity, and scalability is crucial for the robustness and reliability of the RS created when dealing with large datasets[58].

Course recommendation systems (CRS) for MOOCs primarily utilize Machine Learning methods, with a growing trend towards Deep Learning for improved accuracy and precision. Various algorithms, both classic and bespoke, have been employed for MOOC RS construction, with Table VII illustrating their growth trends.

C. Topics or Trend Research

Our systematic literature review identified various MOOC-specific RS, including Concept RS, Course RS, Exercise RS, Learning Materials RS, Learning Paths RS, Next Step RS, and Thread RS[59]. Table VI displays the distribution of publications based on the recommendations discussed in this review report, with each type contributing to up to three study subjects.

The study reveals that collaborative filtering is primarily used in the development of RS for MOOCs, alongside powerful Machine Learning and Deep Learning algorithms, to enhance recommendation efficiency.

D. Approach techniques

Researchers frequently use Machine Learning and Deep Learning methodologies in their research compared to other identified approaches.

1) Machine Learning Approaches

MOOC course RS utilizes Machine Learning to offer personalized suggestions based on large data sets, including TABLE VI. DISTRIBUTION OF THE ARTICLES BASED ON THE TYPE OF RS

Recommendation System (RS)	No of articles
Course RS	68
Next-Step RS	1
Exercise RS	3
Concept RS	1
Learning Material RS	1
Thread RS	1
learning path RS	1

user actions, course material, and comments. This helps assess students' learning behavior and registration patterns, but scalability is a challenge due to increasing student diversity.

Some of the approaches using machine learning methods are discussed below.

The increasing number of Massive Open Online Course (MOOC) providers like Coursera, edX, Udemy, XuetangX, and Nptel is making it challenging to find suitable learning materials. To overcome this problem, the authors of the paper[41] developed MOOCBuddy, a chatbot on Facebook Messenger that uses user profiles and interests to recommend learning materials, using real-time click stream data and a machine learning model based on behavioral patterns[32]

In[34] the authors developed a MOOC course recommendation system using a revolutionary information retrieval technique and a Case-Based Reasoning approach, evaluating student profiles, needs, and learning history to identify relevant courses for individual students.

A content-aware architecture improves efficiency by extracting personalized student information, leveraging demographics and course prerequisites. A course recommendation algorithm is developed, blending user preferences and requirements[31].

In[60] a professional MOOC recommendation system is introduced that uses data mining to classify active and passive learners, achieving an average accuracy of 92% for course suggestions.

The study analyzes students' online learning behaviors to enhance personalized recommendations in MOOC courses. It combines information from multiple sources and presents two models, one based on each source and one integrating them[7].

A study developed a recommendation system to assist students in selecting suitable modules or courses within MOOC environments. Topic modeling, specifically "Nonnegative Matrix Factorization" (NMF), was used to identify commonalities across different providers. A content-based recommendation engine then made recommendations based on data from various sites[30].

In[61],[62], Researchers have developed a recommendation model for Massive Open Online Courses (MOOCs) that uses Deep Learning and a "Multilayer Perceptron" (MLP) architecture for large data processing. The model adheres to the "Cross-industry Standard Process for Data Mining" (CRISP-DM) and has seven hidden layers, a 1e-3 learning rate, and GPU acceleration across 250 epochs. Performance is assessed using precision calculations.

Reciprocal recommender systems are crucial in online services like dating, recruiting, social networking, learning, and skill-sharing. They propose users to each other, requiring satisfaction with the "user match" suggestion. Evaluating bidirectional preferences involves analyzing mutual compatibility[48].

A study utilized two algorithms to extract prerequisite relations at both concept and course levels. The "GuessUNeed" recommendation approach, based on a neural attention network and course prerequisite relations embeddings, was found to be effective in real-world datasets[63].

A study developed a method for grouping individuals based on preferences and creating course suggestions for businesses using specialized word embeddings, Word2Vec, modified K-means algorithm, and perceptron adversarial learning, generating high-quality results through an opinionbased deep learning algorithm[42].

The system uses employee skill profiles to predict talent representation and demand recognition to identify growth requirements. An enhanced version provides explainable recommendations based on competence representation, addressing missing abilities in profiles[64].

The study [53] introduces a gradient technique for balancing exploration and exploitation in user profiles, employing recurrent context-aware learning for current information and a dynamic baseline method for future preferences, undergoing extensive real-world dataset testing.

2) Deep Learning Approach

Deep Learning is gaining popularity in MOOC course RS due to its ability to create tailored suggestions from large data sets, while Neural Networks provide contextaware suggestions. These technologies manage structured and unstructured data sources, enhancing the overall learning experience. The research explored papers utilizing deep learning methodologies, with several techniques being discussed in this summary. The authors in[44] proposed a personalized exercise recommendation system, considering students' learning status and knowledge points. The system improved recommendation precision and diversity, as confirmed by an empirical study.

The study[65] introduces the "Attentional Manhattan Siamese Long Short-Term Memory" (AMSLSTM) network, a self-attention technique that enhances suggestion accuracy by learning students' interests.

A study proposes a custom recommender system for formal learning platforms, using Siamese LSTM networks to assess course descriptions' semantic similarity[33].

The ACKRec approach is a method proposed to improve knowledge in Massive Open Online Courses (MOOCs) by combining a graph convolution network and a heterogeneous information network, incorporating contextual data

from multiple meta-paths and using an extended matrix factorization approach[66].

The study[?] proposed "Top-N Personalized Recommendation with Graph Neural Network" (TP-GNN) as a solution for Massive Open Online Courses (MOOCs). The study utilized two aggregate functions to manage the attention mechanism and the neighbors in sequencefor final item representation. Experimental results showed TP-GNN improved performance on a real-world course dataset.

[67] presents a model for a "Heterogeneous Information Ntwork" (HIN) using MOOCs to capture interactions between elements. The model uses an "Attention Collaborative Extended Matrix Factorization" Based Model (ACMF) to provide tailored recommendation services for MOOC courses. It considers four entities: knowledge, instructor, university, and video, and successfully blends explicit and implicit representations.

Existing graph models suffer from decreased performance due to data sparsity issues, biased recommendations, and incorrect contrasting pairings, resulting in graph noise due to a variety of concepts. To solve these issues, [55] Sharma introduces the ROME framework, which uses hyperbolic angular space to create representations of people and concepts based on their interactions. The framework maximizes mutual information between hyperbolic and Euclidean space representations, improving pairwise discriminative power and angular decision margin.

The article[36] presents a novel collaborative filtering recommendation method for art and MOOC resources, utilizing deep learning techniques, metapath context embedding, attention mechanisms, Laplacian matrix integration, and text word vectors to improve prediction accuracy and stability, outperforming other methods.

3) OtherApproaches

Many other approaches were deviced during the defined period for which the survey is being conducted. The approaches include Immune algorithm + Mixed concept mapping[68], "C4.5 decision tree + Multilayer perceptron (MLP) neural network + naive Bayes (NB) classifier"[24], association rule mining and a priori algorithms were used and two algorithms, class identification (CI) and subclass Identification(ID) algorithms were devices in [69]. In [49]Hyper edge embedding + Graph neural network + Attention mechanism is used, trust based model in proposed in [70], k- means + data analytic[71], Collaborative Filtering + K-nearest neighbor algorithm + Non-negative Matrix Factorization + Cosine similarity were used in [72], Collaborative filtering + Belief Networks are used in the article [51], [73] used Adam algorithm, some authors used "multi-entity relational Self-symmetric meta-path" (MSMP), "associative relational self-symmetric meta-graph", meta-relationship correlation measure[56], and in [74] authors used HIT algorithm + Collaborative Filtering and the authors in [75]used, RNN, LSTM, N-Gram, and Jaccard similarity.

In	addition	to	course	RS,	the	re-
view	examined	vario	us app	roaches	for	RS

[24],[32],[44],[48],[66],[76],[77],[78],[79],[80] implying that these methodologies might considerably enhance research and development in course RS.

E. The Problems in the Course RS

MOOC course RS face the same issues as traditional RS. These issues include the "cold start problem", "data sparsity", "scalability", grey sheep problem, outliers, data overload, and lack of context awareness, among others.

Data overload: The overwhelming amount of data in MOOCs, including course information, learners, and interactions, may overburden the recommendation system, complicating suggestions and assessments.

Lack of Context Awareness: Contextual information, including user demographics, learning goals, prior knowledge, time constraints, and learning styles, can influence course recommendations and user preferences, causing potential problems.

Data Sparsity: Data scarcity in MOOCs can lead to incorrect suggestions due to limited user interactions, narrow interests, and lack of feedback, ratings, and reviews.

Grey Sheep Problem: Gray sheep problems arise when users have unique tastes that don't align with others, posing challenges for recommendation systems in understanding their potential needs.

Cold Start Problem: The RS faces a challenge in providing suitable recommendations for new users or objects due to limited historical data.

Outliers: Outliers, or exceptions, are significant differences in data points from the rest, often caused by errors, input issues, or anomalies, and can significantly impact Collaborative Filtering (CF).

Scalability: As MOOCs gain popularity, a recommendation system's ability to handle growing data on users and courses may be compromised, potentially affecting customer satisfaction and participation.

F. Evaluation in Course RS

The authors used various evaluation metrics to assess the performance of RS, including precision, recall, F1-measure, MAE, RMSE, MRR, and NDCG. These metrics provided crucial information on the precision, comprehensiveness, rate of error, rank quality, and overall efficacy of the recommendation algorithms used in the study. They thoroughly investigated and compared the performance of various course selection algorithms in various areas.

Precision@N:

In MOOCs Course RS Precision refers to the number of relevant courses recommended to users in relation to the overall number of courses accessible with MOOCs.

$$Percision@N = \frac{(No.ofRelvantCoursesinTopN)}{(TotalNo.ofCourses)}$$
(1)

Here N is the number of recommendations made to the user.

Recall@N:

The evaluation of recommended items, specifically the proportion of acceptable courses in the MOOC course recommendation system, is crucial in ensuring user satisfaction and satisfaction.

$$Recall@N = \frac{(No.of RelvantCourses inTopN)}{N}$$
(2)

Here N is the number of recommendations made to the user.

F1-Score@N:

The F1-score, a metric that blends recall and precision, is used to assess the effectiveness of a recommendation system, providing a holistic assessment of recommendation quality in MOOC course RS.

$$F1 - S core@N = \frac{(2 \times Precision@N \times Recall@N)}{(Precision@N + Recall@N)}$$
(3)

Mean Reciprocal Rank (MRR):

The mean reciprocal ranking (MRR) is a tool used to calculate the ranking performance of the first suitable item suggested to a user, highlighting the system's ability to place relevant courses at the top of the recommended list.

$$MRR@N = \frac{1}{S} \sum_{i=1}^{S} \frac{1}{Rank_i}$$
(4)

Here S represents the total number of users or queries in the evaluated dataset

 $Rank_i$ signifies the position of the initial relevant Course recommended to the user within the top-N outcomes.

Normalized Discounted Cumulative Gain (NDCG):

The metric assesses the effectiveness of ranking relevant items in a suggestion list, considering both the relevance and ranking position of recommended products, with higher-ranked items receiving higher ratings.

$$NDCG@N = \frac{(DCG@N)}{(IDCG@N)}$$
(5)

Here discounted cumulative gain (DCG@N) is given as

$$DCG@N = \sum_{i=1}^{n} \frac{Relv_1}{log_2(i+1)}$$
(6)

And Ideal Discounted Cumulative Gain (IDCG@N) ranking of top N recommendations represents DCG@N rankings in descending order.

$$DCG@N = \frac{Relv_{i1}}{log_2(i+1)} + \frac{Relv_{i2}}{log_2(i+1)} + \dots + \frac{Relv_{in}}{log_2(i+1)}$$
(7)

Here i_1, i_2, \ldots, i_n are the rankings in descending order.

Mean Absolute Error (MAE):

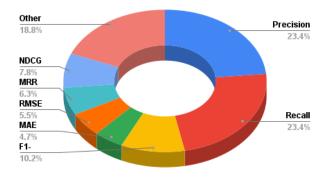


Figure 12. Distribution of the Various Assessment Metrics used by the Authors

MAE is a measure of the average difference between projected and actual user ratings, indicating the accuracy of a recommendation system in predicting user preferences, particularly in MOOC course RS.

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$
(8)

Where y_i is is the actual output value, \hat{y}_i is the predicted output value and N is the number of recommendations

Root Mean Square Error (RMSE):

RMSE is a mathematical concept that measures the error or variance between expected and actual ratings, with higher numbers indicating larger faults. It is used to measure the accuracy of the system's predictions in MOOC course RS.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (|y_i - \hat{y}_i|)^2}{N}}$$
(9)

Where y_i is the actual output value, \hat{y}_i is the predicted output value and N is the number of recommendations.

The pie chart in Figure 12 illustrates the distribution of assessment metrics used by publications to evaluate built system performance, including accuracy, recall, F1-measure, MAE, RMSE, MRR, and NDCG, illustrating the relative use of these measures. The pie chart shows the frequency of publications using specific assessment measures, with precision and recall being the most commonly used. The NDCG metric is also gaining popularity in evaluating RS performance. This visualization helps researchers and professionals understand the assessment landscape and identify trends, patterns, and areas of attention in the MOOC course RS study domain.

Approach	Method	Articles
	Collaborative filtering	X. Jing and J. Tang[31], L. Wu[36], H. Zhang et al.[51], J. Gong et al[66], C. Wang et al.[64], V. Garg and R. Tiwari[81], H. Jain and Anika[60], J. Wang et al.[82], K. Dai et al.[83], X. Yang and W. Jiang[74], Y. Pang et al.[84]
	Dirichlet distribution algorithm Non-negative matrix factorization (NMF) AI/ML algorithms Random forest TF-IDF Perceptron adversarial	S. Yin et al.[7] R. Campos et al.[30], R. Campos et al.[46] I. Palomares[48] Z. Zhao et al[63] Y. Xue[42], B. Mbipom et al.[85] Y. Xue[42]
Machine Learning	learning algorithm Hybrid filtering Case based method C4.5 decision tree Matrix factorization	 Y. Xue[42], R. Campos et al.[86], F. Liu et al.[87] F. Bousbahi and H. Chorfi[34] F. Gasparetti et al.[24] L. Wu[36], X. Wang[49], D. Sheng, J
	Latent Dirichlet Allo- cation	et al.[67] M. Nilashi et al.[61], X. Jiang et al[88]
	Knowledge Graphs Backpropagation algo- rithm	H. Zhang et al.[54], H. Jung et al.[89] H. Zhang et al.[90]
	Jaccard's Similarity Content Based filtering	HH. Wang et al.[91] A. A. Neamah et al.[50], R. Huang and R. Lu et al.[92]
	Trust Management Mystem (TMS) Multilayer Perceptron (MLP)	K. Elghomary et al.[70] S. Sakboonyarat et al.[62]
	Back Propagation Gra- dient Descent	J. Tan et al.[65]
	K- means	Y. Xue[42], Y. Li and H. Li[93], B. Mondal et al.[72], H. Aoulad Ali et al.[71]
	Knowledge map Reinforcement learning Clustering and ML al- gorithms	YH. Chen et al.[76] Y. Lin et al.[52], Y. Lin et al.[53], A C. Chuang et al.[77] A. Cohen et al.[57], S. Ardchir et al.[94]
	Concept Based filter- ing Ontology-Based mod-	B. Mbipom [95] K. Dai et al.[83], M. Amane et al.[96],
	eling Adam algorithm Logistic Regression Association Rule Min- ing Multi-layer Bucketing Map-Reduce	 H. Sebbaq et al.[97] Y. Zhao et al.[98] M. Dong, R et al.[99] T. S. Ibrahim et al.[69], H. Zhang et al.[100], J. Xiao et al.[101] Y. Pang et al.[35] L. Wu [36]

TABLE VII. DISTRIBUTION OF THE ARTICLES BASED ON THE APPR	DACHED USED
THEE THE DISTRIBUTION OF THE FIRTIELES BRIDED ON THE FIFTH	onenieb coeb

Approach	Method	Articles
	Weighted Knowledge Graph (WKG-r)	P. Lv et al.[44]
	Siamese LSTM net- works	K. Mrhar et al.[33]
	Attentional	
	heterogeneous graph convolutional	J. Gong et al.[66]
Deep Learning	deep knowledge recommender	
	(AckRec) Convolutional Neural	L. Wu J.[36], Wang et al.[?], Y. Xue
	Networks Graph Neural	[42]
	Networks	X. Wang et al.[49], H. Luo et al.[55]
	Graph Convolutional Network	D. Sheng [67]
	Attention Mechanism "Manhattan Siamese	Y. Lin et al.[52]
	Long Short Term Memory (AMSLSTM) Network"	J. Tan et al. [65]
	"Attention-Based Con- volutional Neural Net-	J. Wang et al.[82]
	works" "Recurrent Neural Net- works"	S. Pandey et al.[78], N. Roopak et al.[75]
	"Siamese Neural Net- works"	A. Faroughi et al.[102]
	Deep belief Networks Attention Networks	H. Zhang et al.[51] Y. Liu et al.[103]
	Deep Reinforcement learning	JW. Tzeng et al.[104]
	Javascripts, Nodejs	Z. A. Pardos et al.[32]
	Retrieval algorithm Immune algorithm	F. Bousbahi et al.[34] S. Wan et al.[68]
	Correspondence Anal- ysis	M. Furukawa et al.[105]
Other Approaches	Tree structures	Y. Hou et al.[45]
Saler Approaches	Lingo algorithm Stc algorithm	K. M. Alzahrani et al.[47] K. M. Alzahrani et al.[47]
	Analyzing infix Sug-	K. M. Alzahrani et al.[47]
	gesters algorithm Similarity Matrix	S. Prabhakar et al.[106]
	Hawkes Process "Multi-entity relational	Y. Pang et al.[107]]
	Self-symmetric Meta- Path (MSMP)"	P. Hao et al.[56]
	HITS Algorithms	X. Yang et al.[74]

4. CONCLUSIONS AND FUTURE WORK

Research on integrating Course Recommendations in Massive Open Online Courses (MOOCs) has shown potential to enhance students' learning experiences. Until 2016, academics focused on implementing course, peer, and thread CR using Collaborative Filtering (CF), Content-Based Filtering (CBF), and Hybrid approaches. In 2017, there was a shift towards using Recommendation Systems (RS) in MOOCs, incorporating advanced techniques like neural networks, deep learning, and data mining. During the Covid-19 pandemic, there was a surge in articles focusing on RS, indicating a shift towards personalized learning experiences. Scholars initially used learner profiles and course features, but since 2017, there has been a rise in using student activities and learning types for RS design. Hybrid systems have also gained popularity in Course RS. However, the lack of a consistent dataset, primarily from the computer science discipline, makes benchmarking difficult. A complete dataset is needed for recommender systems to evaluate algorithms and assess results.

The design of recommender systems (RS) in MOOCs has been under debated, with datasets primarily focusing on extended MOOCs. Researchers have overlooked scalability and temporal complexity, and the use of NDCG for ranking recommendations. MOOCs provide student profiles, behavioral patterns, and course information, which could be explored through a comprehensive comparison study. RS aim to suggest courses based on students' interests, skills, and market demand. Quantitative and qualitative assessments, such as surveys, interviews, and questionnaires, are needed to evaluate the precision and quality of these recommendations.

References

- S. Sanchez-Gordon and S. Luján-Mora, "Research challenges in accessible moocs: a systematic literature review 2008–2016," *Universal Access in the Information Society*, vol. 17, pp. 775– 789, 2018.
- [2] T. M. W. Chansanam, K. Poonpon and U. Detthamrong, "Success and challenges in moocs: A literature systematic review technique," *TEM Journal*, pp. 1728–1732, 2021.
- [3] P. C. S. Zheng, M. B. Rosson and J. M. Carroll, "Understanding student motivation, behaviors and perceptions in moocs," *Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work Social Computing, Vancouver BC Canada*, pp. 1882–1895, 2015.
- Z. C. J. A. Ruiperez-Valiente, G. Alexandron and D. E. Pritchard, "Using multiple accounts for harvesting solutions in moocs," *Proceedings of the Third (2016) ACM Conference on Learning* @ Scale, Edinburgh Scotland UK, pp. 63–70, 2016.
- [5] M. B. R. S. Zheng, P. Wisniewski and J. M. Carroll, "Ask the instructors: Motivations and challenges of teaching massive open online courses," *Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work Social Computing, San Francisco California USA*, pp. 206–221, 2016.
- [6] C. A. S. Krause-Levy, M. Minnes and L. Porter, "Experience report: Designing massive open online computer science courses for

inclusion," Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1, Virtual Event Germany, pp. 95–101, 2021.

- [7] K. Y. S. Yin and H. Wang, "A mooc courses recommendation system based on learning behaviours," *Proceedings of the ACM Turing Celebration Conference - China, Hefei China*, pp. 133– 137., 2020.
- [8] C. C. Aggarwal, "An introduction to recommender systems," *Recommender Systems*, pp. 1–28, 2016.
- [9] R. A. K. Göğebakan, R. Ulu and M. Şah, "A drug prescription recommendation system based on novel diakid ontology and extensive semantic rules," *Health Information Science and Systems*, vol. 12, no. 1, p. 27, 2024.
- [10] A. K. P. A, S. Chakraborty and O. R. Pooniwala, "Intelligent crop recommendation system using machine learning," 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, pp. 843–848, 2021.
- [11] Z. L. [R. Hassannia, A. Vatankhah Barenji and H. Alipour, "Webbased recommendation system for smart tourism: Multiagent technology," *Sustainability*, vol. 7, no. 2, p. 323, 2019.
- [12] A. S. R. Ahuja and A. Nayyar, "Movie recommender system using k-means clustering and k-nearest neighbor," 9th International Conference on Cloud Computing, Data Science Engineering (Confluence), Noida, India, pp. 263–268., 2019.
- [13] Y. Y. D. Ayata and M. E. Kamasak, "Emotion based music recommendation system using wearable physiological sensors," *IEEE Transactions on Consumer Electronics*, vol. 64, no. 2, pp. 196–203, 2018.
- [14] M. H. C. R. B. M. G. v. r. R. S. Mangalagiri Lakshmi Kanth1, Mohd Abdul Mujeeb, "Personalizing the e-commerce – experience: A recommendation system," *MATEC Web of Conferences*, vol. 392, pp. 01 095–2024, 2024.
- [15] J. DeGe and S. Sang, "Optimization of news dissemination push mode by intelligent edge computing technology for deep learning," *Scientific Reports*, vol. 4, no. 1, p. 6671, 2024.
- [16] D. X. X. F. D. Wang, Y. Liang and R. Guan, "A contentbased recommender system for computer science publications," *Knowledge Based Systems*, vol. 157, pp. 1–9, 2018.
- [17] C. P. E. K. H. Papadakis, A. Papagrigoriou and P. Fragopoulou, "Collaborative filtering recommender systems taxonomy," *Knowledge and Information Systems*, vol. 64, no. 1, p. 35–74, 2022.
- [18] S. M. S. Sharma and V. Rana, "A semantic framework for ecommerce search engine optimization," *International Journal of Information Technology*, vol. 11, no. 1, p. 31–36, 2019.
- [19] I. A. H. F. I. T. M. A. U. Javed, K. Shaukat and S. Luo, "A review of content-based and context-based recommendation systems," *Journal of Emerging Technology in Learning*, vol. 16, no. 3, p. 274, 2021.
- [20] S. R. R. Sharma and S. Tanwar, "Machine learning algorithms for building recommender systems," *nternational Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India*, pp. 785–790, 2019.

- [21] Y.-S. C. B. W. L. Z. R. Chen, Q. Hua and X. Kong, "A survey of collaborative filtering-based recommender systems: From traditional methods to hybrid methods based on social networks," *IEEE Access*, vol. 6, p. 64301–64320, 2018.
- [22] J.-S. S. H.-R. Won, Y. Lee and H. Ahn, "A hybrid collaborative filtering model using customer search keyword data for product recommendation," 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, pp. 1523–1526, 2019.
- [23] M. M. ul Haque and B. Kotaiah, "Hybrid and classical models of rs- a review," *IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)*, pp. 1– 6, 2023.
- [24] C. L. F. S. F. Gasparetti, C. De Medio and M. Temperini, "Prerequisites between learning objects: Automatic extraction based on a machine learning approach," *Telematics and Informatics*, vol. 35, no. 3, p. 595–610, 2018.
- [25] S. Gandhi and M. Gandhi, "ybrid recommendation system with collaborative filtering and association rule mining using big data," 3rd International Conference for Convergence in Technology (I2CT), Pune, p. 1–5, 2018.
- [26] Z. N. J. K. Tarus and A. Yousif, "A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining," *Future Generation Computer Systems*, vol. 72, pp. 37–48, 2017.
- [27] M. Wasid and R. Ali, "An improved recommender system based on multi-criteria clustering approach," *Procedia Computer Science*, vol. 131, p. 93–101, 2018.
- [28] Z. W. Y. S. L. Y. X. Dong, L. Yu and F. Zhang, "A hybrid collaborative filtering model with deep structure for recommender systems," *Proceedings of the AAAI Conference on artificial intelligence*, vol. 31, no. 1, 2017.
- [29] H.-J. J. Y. Yang and B. Kim, "A hybrid recommender system for sequential recommendation: Combining similarity models with markov chains," *IEEE Access*, vol. 8, pp. 190 136–190 146, 2020.
- [30] R. P. D. S. R. Campos and J. Oliveira, "A recommendation system based on knowledge gap identification in moocs ecosystems," XVI Brazilian Symposium on Information Systems, São Bernardo do Campo Brazil, pp. 1–8, 2020.
- [31] X. Jing and J. Tang, "Guess you like: course recommendation in moocs," *Proceedings of the International Conference on Web Intelligence, Leipzig Germany*, p. 783–789, 2017.
- [32] D. D. Z. A. Pardos, S. Tang and C. V. Le, "Enabling real-time adaptivity in moocs with a personalized next-step recommendation framework," *Proceedings of the Fourth (2017) ACM Conference* on Learning @ Scale, Cambridge Massachusetts USA, pp. 23–32, 2017.
- [33] K. Mrhar and M. Abik, "Toward a deep recommender system for moocs platforms," *Proceedings of the 2019 3rd International Conference on Advances in Artificial Intelligence, Istanbul Turkey*, pp. 173–177, 2019.
- [34] F. Bousbahi and H. Chorfi, "Mooc-rec: A case based recommender system for moocs," *Procedia-Social and Behavioral Sciences*, vol. 195, pp. 1813–1822, 2015.

- [35] Y. Z. Y. Pang, Y. Jin and T. Zhu, "ollaborative filtering recommendation for mooc application," *Computer Applications in Engineering Education*, vol. 25, no. 1, p. 120–128, 2017.
- [36] L. Wu, "Collaborative filtering recommendation algorithm for mooc resources based on deep learning," *Complexity*, vol. 2021, pp. 1–11, 2021.
- [37] R. S. Wahono, "A systematic literature review of software defect prediction: Research trends, datasets, methods and frameworks," *Journal of software engineering*, vol. 1, no. 1, 2015.
- [38] S. Keele, "Guidelines for performing systematic literature reviews in software engineering," 2007.
- [39] G. S. E. N. A. S. A. A. AP Widyassari, S Rustad, "Review of automatic text summarization techniques methods," *Journal of King Saud University-Computer and Information Sciences*, vol. 34, no. 4, pp. 1029–1046, 2022.
- [40] A. Dorling, "Spice: Software process improvement and capability determination," *Software Quality Journal*, vol. 2, pp. 209–224, 1993.
- [41] C. Holotescu, "Moocbuddy: a chatbot for personalized learning with moocs," 2016.
- [42] Y. Xue, "Knowledge graph based recommendation by adversarial learning algorithm in application of lifelong education data classification," ACM Transactions on Asian and Low-Resource Language Information Processing, p. 3595636, 2023.
- [43] D. C. B. K. B. J. A. Konstan, J. D. Walker and M. D. Ekstrand, "Teaching recommender systems at large scale: Evaluation and lessons learned from a hybrid mooc," ACM Transactions on Computer-Human Interaction (TOCHI), vol. 22, no. 2, pp. 1–23, 2015.
- [44] J. X. P. Lv, X. Wang and J. Wang, "Utilizing knowledge graph and student testing behavior data for personalized exercise recommendation," *Proceedings of ACM Turing Celebration Conference* - *China, Shanghai China*, pp. 53–59, 2018.
- [45] J. X. Y. Hou, P. Zhou and D. O. Wu, "Course recommendation of mooc with big data support: A contextual online learning approach," *IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI*, pp. 106–111, 2018.
- [46] R. P. D. S. R. Campos and J. Oliveira, "Providing recommendations for communities of learners in moocs ecosystems," *Expert Systems with Applications*, vol. 205, p. 117510, 2022.
- [47] K. M. Alzahrani and M. Meccawy, "Moocs one-stop shop: A realization of a unified moocs search engine," *IEEE Access*, vol. 9, pp. 160175–160185, 2021.
- [48] I. Palomares, "Reciprocal recommendation: Matching users with the right users," *Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event China*, pp. 2429–2431, 2020.
- [49] L. G. H. J. F. L. X. Wang, W. Ma and C. Xu, "Hgnn: Hyperedgebased graph neural network for mooc course recommendation," *Information Processing Management*, vol. 59, no. 3, p. 102938, 2022.

- [50] A. A. Neamah and A. S. El-Ameer, "Design and evaluation of a course recommender system using content-based approach," *nternational Conference on Advanced Science and Engineering* (ICOASE), Duhok, pp. 1–6, 2018.
- [51] Z. L. S. L. H. Zhang, T. Huang and H. Yang, "Moocre: A highly accurate resource recommendation model for use in mooc environments," *Mobile Networks and Applications*, vol. 24, pp. 34– 46, 2019.
- [52] F. L. W. Z. Y. L. Y. Lin, S. Feng and P. Wu, "Adaptive course recommendation in moocs," *Knowledge-Based Systems*, vol. 224, p. 107085, 2021.
- [53] W. Z. J. X. L. L. P. W. Y. L. C. M. Y Lin, F Lin, "Hierarchical reinforcement learning with dynamic recurrent mechanism for course recommendation," *Knowledge-Based Systems*, vol. 244, p. 108546, 2022.
- [54] B. Y. W. W. H. Zhang, X. Shen and Y. Feng, "Kgan: Knowledge grouping aggregation network for course recommendation in moocs," *Expert Systems with Applications*, vol. 211, p. 118344, 2023.
- [55] N. A. H. H. Luo and T. N. M. Aris, "Rome: A graph contrastive multi-view framework from hyperbolic angular space for moocs recommendation," *IEEE Access*, vol. 11, pp. 9691–9700, 2023.
- [56] Y. L. P. Hao and C. Bai, "Meta-relationship for course recommendation in moocs," *Multimedia Systems*, vol. 29, pp. 235–246, 2023.
- [57] A. Cohen and S. Holstein, "Analysing successful massive open online courses using the community of inquiry model as perceived by students," *Journal of Computer Assisted Learning*, vol. 34, no. 5, pp. 544–556, 2018.
- [58] J. X. Y. P. R. M. Z. Xia, A. Sun and M. Cheng, "Contemporary rs on big data and their applications: A survey," *ArXiv E-Prints*, p. 2206, 2022.
- [59] R. P. M. H. A. M. L. Salau, M. Hamada and Y. Watanobe, "Stateof-the-art survey on deep learning-based recommender systems for e-learning," *Applied Sciences*, vol. 12, no. 23, p. 11996, 2023.
- [60] H. Jain and Anika, "Applying data mining techniques for generating moocs recommendations on the basis of learners online activity," *IEEE 6th International Conference on MOOCs, Innovation* and Technology in Education (MITE), Hyderabad, India, pp. 6–13, 2018.
- [61] A. A. M. A. O. A. F. K. N. N. O. A. A. K. S. M. Mehrbakhsh Nilashi, Behrouz Minaei-Bidgoli, "Knowledge discovery for course choice decision in massive open online courses using machine learning approaches," *Expert Systems with Applications*, vol. 199, p. 117092, 2022.
- [62] S. Sakboonyarat and P. Tantatsanawong, "Massive open online courses (moocs) recommendation modeling using deep learning," *3rd International Computer Science and Engineering Conference* (ICSEC), Phuket, Thailand, pp. 275–280, 2019.
- [63] C. L. Z. Zhao, Y. Yang and L. Nie, "Guessuneed: Recommending courses via neural attention network and course prerequisite relation embeddings," ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 16, no. 4, pp. 1–17, 2020.

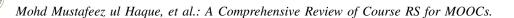
- [64] P. W. C. Z. X. Z. E. C. H. X. C Wang, H Zhu, "Personalized and explainable employee training course recommendations: A bayesian variational approach," ACM Transactions on Information Systems (TOIS), vol. 40, no. 4, pp. 1–32, 2022.
- [65] T. L. J. Tan, L. Chang and X. Zhao, "Attentional autoencoder for course recommendation in mooc with course relevance," *International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Chongqing, China*, pp. 190—196, 2020.
- [66] J. W. W. F. H. P. J. T. P. Y. J Gong, S Wang, "Attentional graph convolutional networks for knowledge concept recommendation in moocs in a heterogeneous view," SIGIR '20: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 79–88, 2020.
- [67] Q. X. D. Sheng, J. Yuan and L. Li, "Acmf: An attention collaborative extended matrix factorization based model for mooc course service via a heterogeneous view," *Future Generation Computer Systems*, vol. 126, pp. 211–224, 2022.
- [68] S. Wan and Z. Niu, "A learner oriented learning recommendation approach based on mixed concept mapping and immune algorithm," *Knowledge-Based Systems*, vol. 103, pp. 28—40, 2016.
- [69] N. E. T. S. Ibrahim, A. I. Saleh and M. M. Abdelsalam, "A fog based recommendation system for promoting the performance of e-learning environments," *Computers Electrical Engineering*, vol. 87, p. 106791, 2020.
- [70] K. Elghomary and D. Bouzidi, "Dynamic peer recommendation system based on trust model for sustainable social tutoring in moocs," *1st International Conference on Smart Systems and Data Science (ICSSD), Rabat, Morocco*, pp. 1–9, 2019.
- [71] B. A. H. Aoulad Ali, C. Mohamed and T. E. Alami, "A course recommendation system for moocs based on online learning," 2021 XI International Conference on Virtual Campus (JICV), Salamanca, Spain, pp. 1–3, 2021.
- [72] S. M. B. Mondal, O. Patra and P. Patra, "A course recommendation system based on grades," 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India, pp. 1—5, 2020.
- [73] Z. F. M. Q. H. Qiu, C. Zhang and S.-Y. Kung, Eds., Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan, August 14–16, 2021, Proceedings, Part I vol. 12815. in Lecture Notes in Computer Science, vol. 12815, 2021.
- [74] X. Yang and W. Jiang, "Dynamic online course recommendation based on course network and user network," *Smart City and Informatization: 7th International Conference, iSCI*, vol. 1122, pp. 180–196, 2019.
- [75] G. D. N. Roopak and A. Santhanavijayan, "Hcrdl: A hybridized approach for course recommendation using deep learning," *Intelligent Systems Design and Applications, A. Abraham, V. Piuri, N. Gandhi, P. Siarry, A. Kaklauskas, and A. Madureira, Eds., Cham,* pp. 1105—1113, 2021.
- [76] J.-W. T. C. L. Y.-X. H. Y.-H. Chen, N.-F. Huang and H.-H. Huang, "A personalized learning path recommender system with line bot in moocs based on lstm," 2022 11th International Conference

on Educational and Information Technology (ICEIT), Chengdu, China, pp. 40-45, 2022.

- [77] J.-W. T. C.-A. L.-Y.-X. H. A.-C. Chuang, N.-F. Huang and H.-H. Huang, "Moocers: Exercise recommender system in moocs based on reinforcement learning algorithm," 2021 8th International Conference on Soft Computing Machine Intelligence (ISCMI), Cario, Egypt, pp. 186—190, 2021.
- [78] G. K. S. Pandey, A. Lan and J. Srivastava, "Learning student interest trajectory for mooc thread recommendation," 2020 International Conference on Data Mining Workshops (ICDMW), Sorrento, Italy, pp. 400–407, 2020.
- [79] J. X. P. Lv, X. Wang and J. Wang, "ntelligent personalised exercise recommendation: A weighted knowledge graph-based approach," *Computer Applications in Engineering Education*, vol. 29, no. 5, pp. 1403—1419, 2021.
- [80] M. N. N. Jameel Ahamed and M. Ahmed, "Matrix factorization and cosine similarity based recommendation system for cold start problem in e-commerce industries," *International Journal of Computing and Digital Systems*, vol. 15.1, pp. 775–787, 2024.
- [81] V. Garg and R. Tiwari, "Hybrid massive open online course (mooc) recommendation system using machine learning," *International Conference on Recent Trends in Engineering, Science Technology* - (ICRTEST 2016), Hyderabad, India, pp. 1–5, 2016.
- [82] O. T. S. A. D. Z. J. Wang, H. Xie and F. L. Wang, "Attention-based cnn for personalized course recommendations for mooc learners," 2020 International Symposium on Educational Technology (ISET), Bangkok, Thailand, pp. 180–184, 2020.
- [83] A. F. V. K. Dai and R. P. D. Redondo, "A new moocs' recommendation framework based on linkedin data," *Innovations in Smart Learning*, pp. 19–22, 2017.
- [84] Y. J. H. P. T. X. Y. Pang, W. Liu and Y. Wu, "Adaptive recommendation for mooc with collaborative filtering and time series," *Computer Applications in Engineering Education*, vol. 26, no. 6, pp. 2071–2083, 2018.
- [85] S. C. B. Mbipom and S. Massie, "Harnessing background knowledge for e-learning recommendation," *Research and Development in Intelligent Systems XXXIII, M. Bramer and M. Petridis, Eds*, pp. 3–17, 2016.
- [86] R. P. D. S. R. Campos and J. Oliveira, "Web-based recommendation system architecture for knowledge reuse in moocs ecosystems," 2018 IEEE International Conference on Information Reuse and Integration (IRI), pp. 193–200, 2018.
- [87] W. G. F. Liu and H. Wang, "Framework model of personalized learning recommendation system based on deep learning under the background of big data," *Frontier Computing, J. C. Hung, N. Y. Yen, and J.-W. Chang, Eds., Singapore*, pp. 1141–1148, 2020.
- [88] X. Y. X. Jiang, L. Bai and Y. Wang, "Lda-based online intelligent courses recommendation system," *Evolutionary Intelligence*, vol. 16, no. 5, pp. 1619–1625, 2023.
- [89] S. K. H. Jung, Y. Jang and H. Kim, "Kpcr: Knowledge graph enhanced personalized course recommendation," *AI 2021: Advances* in Artificial Intelligence, vol. 13151, pp. 739–750, 2022.
- [90] T. H. H. Zhang, H. Yang and G. Zhan, "Dbncf: Personalized

courses recommendation system based on dbn in mooc environment," 2017 International Symposium on Educational Technology (ISET), Hong Kong, pp. 106–108, 2017.

- [91] A. O. H.-H. Wang, C. Chootong and W. Sommool, "Online courses recommendation system based on industry occupation skills requirements," 2017 10th International Conference on Ubimedia Computing and Workshops (Ubi-Media), pp. 1–6, 2017.
- [92] R. Huang and R. Lu, "Research on content-based mooc recommender model," 5th International Conference on Systems and Informatics (ICSAI), Nanjing, pp. 676–681, 2018.
- [93] Y. Li and H. Li, "Mooc-frs:a new fusion recommender system for moocs," 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 1481– 1488, 2017.
- [94] M. A. T. S. Ardchir and M. Azzouazi, "Towards an adaptive learning framework for moocs," *E-Technologies: Embracing the Internet of Things*, vol. 289, pp. 236—251, 2017.
- [95] B. Mbipom, "Finding relevant e-learning materials," Artificial Intelligence in Education, vol. 11626, pp. 190–194, 2019.
- [96] K. A. M. Amane and M. Berrada, "Ersdo: E-learning recommender system based on dynamic ontology," *Education and Information Technologies*, vol. 27, no. 6, pp. 7549—7561, 2022.
- [97] N. e. F. H. Sebbaq and S. Bennani, "Recommender system to support moocs teachers: Framework based on ontology and linked data," *Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications, in SITA'20. New York, NY, USA*, pp. 1—7, 2018.
- [98] Y. J. Y. Zhao, W. Ma and J. Zhan, "A moocs recommender system based on user's knowledge background," *Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science()*, vol. 12815, 2021.
- [99] R. Y. M. Dong and Z. A. Pardos, "Design and deployment of a better course search tool: Inferring latent keywords from enrollment networks," *Transforming Learning with Meaningful Technologies*, *M. Scheffel, J. Broisin, V. Pammer-Schindler, A. Ioannou, and J. Schneider, Eds., Cham*, p. 480–494, 2019.
- [100] Z. L. S. L. H. Zhang, T. Huang and Z. Zhou, "Mcrs: A course recommendation system for moocs," *Multimedia Tools and Applications*, vol. 77, no. 6, pp. 7051—7069, 2018.
- [101] B. J. J. Xiao, M. Wang and J. Li, "A personalized recommendation system with combinational algorithm for online learning," *Journal* of ambient intelligence and humanized computing, vol. 9, no. 3, pp. 667—677, 2018.
- [102] A. Faroughi and P. Moradi, "Moocs recommender system with siamese neural network," 2022 9th International and the 15th National Conference on E-Learning and E-Teaching (ICeLeT), Sanandaj, Iran, Islamic Republic of, pp. 1–6, 2022.
- [103] C. Y. C. C. Y. Liu, Y. Dong and R. Jia, "Personalized course recommendation model integrating multi-granularity sessions and multi-type interests," *Education and Information Technologies*, vol. 29, pp. 5879—5901, 2023.
- [104] A.-C. C. T.-W. H. J.-W. Tzeng, N.-F. Huang and H.-Y. Chang,



"Massive open online course recommendation system based on a reinforcement learning algorithm," *Neural Computing and Applications*, 2023.

- [105] M. Furukawa and K. Yamaji, "Adaptive recommendation of teaching materials based on free descriptions in mooc course," 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Hamamatsu, pp. 1011—1012, 2017.
- [106] G. S. S. Prabhakar and O. Zaiane, "Reciprocal recommender system for learners in massive open online courses (moocs)," Advances in Web-Based Learning – ICWL 2017, vol. 10473, H. Xie, E. Popescu, G. Hancke, and B. Fernández Manjón, Eds., in Lecture Notes in Computer Science, Cham, vol. 10473, pp. 157– -167, 2017.
- [107] W. T. Y. W. Y. Pang, C. Liao and C. Zhou, "Recommendation for mooc with learner neighbors and learning series," Web Information Systems Engineering – WISE 2018, vol. 11234, H. Hacid, W. Cellary, H. Wang, H.-Y. Paik, and R. Zhou, Eds., in Lecture Notes in Computer Science, vol. 11234, pp. 379–394, 2018.

Dr. Bonthu Kotaiah doctoral candidate in Information Technology and Computer Applications, has published over 50 research articles and gained over 10 patents. He has worked as an Assistant Professor at Maulana Azad National Urdu University and is currently an Associate Professor at Central Tribal University of Andhra Pradesh. His research interests include Software Reliabil-

ity, Artificial Neural Networks, Fuzzy Logic, Neuro-Fuzzy Systems, Machine Learning, and RS.

He has over 20 research publications, an edited book, and has visited countries like the Czech Republic, Germany, United King-

dom, UAE, and Turkey. He supervises 10 Master of Technology

students, over 40 Bachelor of Technology and MCA research

projects, and supervises 5 Ph.D. Scholars. His research areas

include the Internet of Things, Computer Networks, Machine

Learning, and Deep Learning.

Dr. Jameel Ahamed is an Assistant Professor in the Department of Computer Science & Information Technology at Maulana Azad National Urdu University, Hyderabad. He holds a Doctor of Philosophy from the National Institute of Technology Srinagar and a Bachelor of Technology from Jamia Millia Islamia. Before joining MANUU, he worked as a Guest Faculty in Electronics Engineering at Aligarh Muslim University.

1712

Mohd Mustafeez ul Haque a Research Scholar at Maulana Azad National Urdu University, Hyderabad, is working on recommendations systems for online customerbased platforms to improve performance and acceptability. His research interests include RS, Machine Learning, Theory of Computation, Software Engineering, Artificial Intelligence, and Natural Language Processing. He completed his Master of Technology in

Software Engineering from Kakatiya University, Warangal.