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Abstract: This study compares the performance of current object detection models, namely YOLOv7-tiny, YOLOv8n, and EfficientDet-
dO, using YOLOv5n as the baseline model in addressing the challenge of Rupiah banknote detection. The challenge involves
recognizing unique features on the banknotes, which may have higher complexity compared to common objects in object detection
tasks. The dataset used covers 2022 Emission Year Rupiah banknotes, is manually created, and covers various real-world scenarios
for comprehensive evaluation. This research also explores the impact of data augmentation to optimize model performance. Results
show that YOLOVS is the top-performing model, with mAP@0.5 scoring 0.995 and mAP@0.5:0.95 scoring 0.994 on the test
data, also consistently maintaining high performance even without augmentation. YOLOvS also showed impressive mAP scores
of 0.995 and 0.973 with augmentation. YOLOv7, although it did not surpass YOLOv8 and YOLOVS5 in accuracy, achieved good
results, especially with data augmentation. In terms of inference time, YOLOvVS excels with 6.7 ms without augmentation and
6.5 ms with augmentation, emphasizing its efficiency. YOLOVS, although slightly less efficient, with inference time of 7.8 ms
without augmentation and 8.2 ms with augmentation, provides higher accuracy. The choice between the two depends on the balance
between accuracy and efficiency. This research also highlights the positive impact of data augmentation, especially in YOLOVS’s
responsiveness to additional data. While EfficientDet is efficient in inference time and resource usage, it suffers in performance, especially
without augmentation. This study attempts to develop a dependable method for identifying banknotes. By achieving this, the aim
was to improve accessibility in financial tasks and everyday life, particularly benefiting those with visual impairments or other disabilities.

Keywords: Deep Learning, Object Detection, Indonesian Rupiah, YOLOv5 model, YOLOv7 model, YOLOvVS8 model, EfficientDet
model

1. INTRODUCTION the most recent design iteration. It is important to note

Object detection is a complex and vital challenge within
the field of computer vision. It revolves around the exact
localization and recognition of objects in input data. These
algorithms work by analyzing the distinctive characteristics
of objects and applying machine learning techniques to both
characterize and identify these objects [1]. Object detection
has a wide range of uses, from enabling autonomous
vehicles to assisting in the field of medical imaging [2].
The recognition of Indonesian Rupiah banknotes, however,
is a specialized aspect of object detection that is the focus
of this study.

The general availability of money in daily financial
transactions serves to highlight the importance of this
particularized object detection task [3]. This is especially
important in the context of Indonesia, where Bank Indone-
sia issues and governs the country’s official currency, the
Indonesian Rupiah (IDR). Coins and banknotes are the two
primary forms of currency. In this study, we utilized the
2022 issuance of the Indonesian Rupiah, which represents

that the Indonesian Rupiah’s design has undergone multiple
revisions over the years, with the primary objective being
the enhancement of currency quality and the reinforcement
of security features [4].

Disabled individuals often encounter numerous chal-
lenges in their daily activities. These difficulties span a
range of aspects, including mobility, dining, and shopping,
with many of these activities involving financial transac-
tions. For physically disabled individuals, maintaining these
operations can prove to be significantly more demanding
than for those who are able-bodied [5]. However, among
the disabled community, visually impaired individuals face
even greater obstacles compared to others. Despite the
growing popularity of electronic financial transactions, cash
remains a primary form of exchange [6]. This presents
a unique challenge, as effective strategies are required
to enable precise handling and recognition of banknotes,
something that can be especially challenging for those with
visual impairments. Consequently, this group of people
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often encounters substantial difficulties when attempting to
carry out financial transactions securely and independently

[7].

Visual impairments have wide-ranging effects on peo-
ple’s lives, affecting everything from their level of inde-
pendence overall to their ability to access education and
employment opportunities [8]. For this group, being able
to identify and distinguish banknotes emerges as a crucial
component of financial wellness. While Braille text, tactile
features, and currency readers have all offered some support,
there is still a critical need for cutting-edge solutions.
Here, computer vision technology holds out the possibility
of helping those who are blind due to its potential for
advancement [9].

Object detection is an important subject that is con-
stantly researched in computer vision research [10]. Deep
learning-based object detection technology has made signif-
icant advances in recent decades [11]. These cutting-edge
techniques, demonstrated by models such as You Only Look
Once (YOLO) [12], have attracted considerable attention
due to their real-time detection capabilities and astounding
levels of accuracy. On the other hand, EfficientDet was
proposed as an object detector model that offers better effi-
ciency. This research consistently demonstrated superiority
in terms of accuracy and efficiency under various resource
conditions [13]. This highlights the significant potential of
applying these models in the context of Rupiah banknote
detection.

This study compares four cutting-edge object detection
models: YOLOVS [14], YOLOv7 [15], YOLOVvVS [16], Effi-
cientDet [13] in the context of detecting Indonesian Rupiah
banknotes. The aim of this research is to determine the most
effective model for developing an application that helps
visually impaired people in accurately recognizing and
differentiating Indonesian Rupiah banknotes. The study’s
goal is to identify these models’ distinct strengths and their
applicability in the context of banknote recognition.

2. RELATED WORKS

Several methods for detecting banknotes have been in-
vestigated. Notably, feature-based approaches like Oriented
FAST and Rotated BRIEF (ORB) algorithm have shown
promise. Sarker and his colleagues proposed ORB as a
system for assisting visually impaired individuals in real-
time Bangladeshi currency detection [17]. This method
demonstrated rapid matching times and achieved a 100%
accuracy rate. Their system, which was created as a mobile
app, proved to be a valuable tool for visually impaired
people, assisting them in precise and real-time banknote
identification.

Another noteworthy feature-based algorithm for ban-
knote detection is Speeded Up Robust Features (SURF).
To identify different key points and extract relevant features
from the banknote image, SURF employs an arbitrary fea-
ture transformation technique. Gillich et al. applied SURF

to detect the position and potential occlusion of randomly
distributed textured Egyptian banknotes using a smartphone
camera [18]. This method employs Random Sample and
Consensus (RANSAC) algorithm to filter out false results.
In all categories, the accuracy was reported to be 93%.

Another study conducted by Sufri and his team also
investigates the development of an automated banknote
recognition system to assist visually impaired individuals
in identifying Malaysian Ringgit banknotes [19]. It assesses
the influence of region and orientation on the performance
of feature extraction-based Machine Learning algorithms
(K-Nearest Neighbor (KNN), Direct Torque Control (DTC),
Support Vector Machine (SVM), Bayesian Classifier (BC))
as well as Deep Learning via AlexNet. SVM and BC
achieved 100% accuracy, whereas Deep Learning (AlexNet)
performed well with similar orientation but struggled with
new orientation. With the goal of enhancing the indepen-
dence and standard of living for the blind and visually
impaired individuals during monetary transactions, this dual
approach offers valuable insights for creating strong and
flexible banknote identification systems.

Deep learning-based models have brought a transforma-
tive impact to banknote detection. One successful example
is the work conducted by Park and his team [20]. This
research suggests a three-stage banknote and coin detection
technology using a smartphone camera. To overcome the
limitations of earlier approaches, this technique combines
Pretrained Faster Region-based Convolutional Neural Net-
work (R-CNN) with ResNet architecture and geometric con-
straints. Experiments conducted using Dijkstra’s Algorithm
with Buckets vl (DKB vl) and Jordanian dinar (JOD)
databases demonstrate greater accuracy when compared to
current techniques. The proposed model’s accuracy rates for
coins, banknotes, and coins and banknotes were 95.48%,
98.8%, and 97.21%, respectively, for DKB vl and JOD,
and they were 92.11%, 97.47%, and 96.04%, respectively,
for DKB vl and JOD, respectively.

YOLOV3 is a prominent deep learning technique for
detecting banknotes [11]. Park and his teams [21] present
the Multinational Banknote Detecting Model (MBDM). By
adding specialized structures including convolution layers,
residual layers, and downsampling techniques, MBDM em-
ploys Improved YOLOV3 in this study. MBDM, with its
69 convolution layers, enhances the operations of feature
extraction, prediction, and upsampling, leading to better
performance in banknote detection. The alterations are
intended to enhance the model’s precision in identifying
and localize banknotes, particularly by utilizing mosaic
data enhancement during the training process. MBDM
performed better than current techniques, with 83.96%
accuracy. MBDM performs better in the detection of dif-
ferent currencies thanks to its efficient feature extraction
capabilities.

The YOLOVS algorithm is a promising option for
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real-time banknote detection applications because of its
efficiency and versatility, which have propelled it to the
forefront of banknote detection in recent developments.
Notably, with an image size of 640 pixels, YOLOv5x
significantly obtained an Average Precision (AP) of 50.7%
with an image size of 640 pixels when tested on the
Microsoft Common Objects in Context (MS COCO) dataset
test-dev 2017. Additionally, it can attain a remarkable 200
frames per second (FPS) using a 32-batch batch size on an
NVIDIA V100. With test-time augmentation and a larger
input size of 1536 pixels, YOLOVS attains an even higher
AP of 55.8% [22]. According to a study by Dande and
colleagues, the YOLOvVS model can successfully identify
Indian banknotes, as evidenced by the consistently high
mean Average Precision (mAP), precision, and recall in
banknote detection [23]. These results collectively under-
score YOLOvVS’s competence in delivering accurate and
efficient banknote recognition.

Another noteworthy advancement is the YOLOv7 [15],
as introduced by Wang and his team, presents a novel ar-
chitecture for real-time object detection and model scaling,
offering high accuracy of 56.8% AP, with YOLOv7-E6
delivering outstanding performance at 56 FPS and 55.9%
AP. Several architectural adjustments and a set of “bag-of-
freebies” were suggested by YOLOV7 to increase accuracy
while maintaining the same inference speed and training
time [22].

Furthermore, the state-of-the-art YOLOvVS8 pushes the
boundaries of speed and accuracy, outperforming its pre-
decessor YOLOVS with an AP of 53.9% on the MS COCO
dataset for 640-pixel images. The exceptional processing
speed of YOLOvVS8 distinguishes it. It runs at an impres-
sive 280 frames per second (FPS) on an NVIDIA A100
with TensorRT. This high FPS indicates that YOLOvVS8 can
process and analyze a large number of frames or images
per second, making it ideal for real-time applications and
scenarios requiring speed. All of these improvements put
YOLOVS at the forefront of object detection technology at
this time [22].

EfficientDet proposes an object detector that achieves
better efficiency. By introducing a bi-directional feature
pyramid network (BiFPN) and a compound scaling method,
this research improves accuracy and efficiency. Efficient-
DetD7, the proposed model, achieves an AP value of 52.2%
on the COCO test-dev dataset, while being significantly
smaller and requiring fewer floating-point operations com-
pared to previous detectors. The approaches in the study
consistently excel in terms of accuracy and efficiency across
various resource constraints [13].

Based on the development of these deep learning
models, a comparison will be made for banknote detec-
tion between several models, namely YOLOvS5, YOLOvV7,
YOLOvV8 and EfficientDet. The goal of this study is to
evaluate each model’s ability to detect banknotes in order

to determine which model will results in the most accurate
and efficient results.

3. METHODOLOGY

The planning stage of the research involved developing a
research idea and conducting an extensive literature review.
The problem identification served as the foundation for
directing the research toward a specific goal. Following the
planning stage, the initiation stage involves dataset creation
and pre-processing to ensure data integrity. The training
stage of the research is where a currency detection model is
developed. Validation data is used to monitor the model’s
performance. Following training, a fine-tuning phase is
implemented to improve currency detection performance.
This study also compares four object detection algorithms
in the context of Rupiah banknote detection: YOLOVS,
YOLOvV7, YOLOVS, and EfficientDet.

A. Data Collection

The data for this study was manually collected using
a mobile phone camera. The dataset consists of images of
Rupiah banknotes from the emission year 2022, as shown
in Figure 1. The dataset’s diversity was carefully selected
to include a diverse range of real-world scenarios and
challenges. There are 15 background variations, each with 5
images per class, contributing to the diversity of the dataset.
It contains images taken in a variety of lighting conditions,
including outdoor sunlight, outdoor nighttime, well-lit in-
door, and low-light indoor settings. The dataset includes
banknotes held by individuals and placed on flat surfaces,
as well as various background conditions and colors, flash
usage, and instances of folded or crumpled banknotes.
The backgrounds utilized for indoor settings included a
variety of materials such as wood, tiles, and cardboard,
alongside colors including red, pink, black, white, and
light blue. For outdoor settings, backgrounds included park
scenery. Furthermore, images were obtained from a variety
of angles, including flat and oblique perspectives, to assess
the method’s ability to detect banknotes accurately from
various perspectives. This meticulous dataset curation aims
to provide a robust evaluation of object detection methods,
ensuring reliable Rupiah banknote detection results under a
variety of real-world conditions and scenarios.

Figure 1. 2022 Edition Rupiah Banknotes
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TABLE 1. Data Information [24]

Nominal Front Image Back Image Size Color
Rp100.000 Dr. (H.C.) Ir. Soekarno and Topeng Betawi dance, Raja Ampat 151 mm x 65 mm Red
Dr. (H.C.) Drs. Mohammad landscape and Moon Orchid flower
Hatta
Rp50.000 Ir. H. Djuanda Kartawidjaja Legong dance, Komodo National 146 mm x 65 mm Blue
Park landscape and Bali Jepun
flower
Rp20.000 Dr. G. S. S. J. Ratulangi Gong dance, Derawan landscape 141 mm X 65 mm Green
and Black Orchid flower
Rp10.000 Frans Kaisiepo Pakarena dance, Wakatobi Na- 136 mm x 65 mm Purple
tional Park landscape, and Cem-
paka Kasar forest
Rp5.000 Dr. K. H. Idham Chalid Gambyong dance, Mount Bromo, 131 mm x 65 mm Brown
and Sedap malam flower
Rp2.000 Mohammad Hoesni Tham- Piring dance, Ngarai Sianok land- 126 mm x 65 mm Grey
rin scape, and Jeumpa flower
Rp1.000 Tjun Meutia Tifa dance, Banda Neira landscape, 121 mm x 65 mm Green

and Larat Orchid flower

A representative dataset was created using Bank Indone-
sia (BI) Rupiah banknotes from the 2022 emission year.
This dataset contains seven Rupiah banknote denominations
issued in the year 2022: Rp.100,000, Rp.50,000, Rp.20,000,
Rp.10,000, Rp.5,000, Rp.2,000, and Rp.1,000. We captured
separate images for each banknote denomination, encom-
passing both the front and back classes, resulting in a total
of 14 classes. The resolution was set to 640 x 640 pixels
for the input size. Table I contains information about the
dataset that was used.

The size of each class in the dataset is 75 images per
class, with a total of 1050 images of Rupiah banknotes were
collected for the 2022 emission year. The dataset is carefully
balanced, with each class having an equal proportion of
75 images. This balanced distribution ensures that each
banknote denomination is adequately represented in the
dataset, facilitating a fair evaluation of the object detection
methods under consideration.

The goal of gathering this data is to create a large and
representative dataset from which to conduct an accurate
evaluation of the object detection method to be tested. With
a targeted dataset, this study can facilitate a comprehensive
assessment of the effectiveness of the object detection
techniques under consideration. By collecting a dataset
that includes a variety of conditions, backgrounds, viewing
angles, and irregularities as described above, this study
hopes to provide accurate and reliable results in evaluating
the performance of the compared object detection methods
in Rupiah banknote detection.

B. Preprocessing

The preprocessing stage is shown in Figure 2. The
preprocessing of the banknote dataset involves several cru-
cial steps and is primarily managed using the Roboflow
platform. First, the data collection phase includes man-
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Figure 2. Preprocessing Steps

ual labelling, where each banknote instance in an image
is meticulously annotated with a bounding box, and a
corresponding label specifying its denomination is added.
Following this labelling process, the next step is to adjust
the resolution of the images. The original resolution of 3024
x 3024 is modified to 640 x 640. This resolution adjustment
is necessary because the chosen YOLO detection model has
a maximum resolution limitation of 640 x 640. This change
ensures that the dataset complies with the requirements
of the YOLO model. After the resolution adjustment is
complete, the resolved dataset is ready to proceed to the
data augmentation stage.
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Data augmentation is an essential step in dataset pro-
cessing aimed at enhancing the variety and volume of
the training data. 3-time augmentation approach is applied,
where one image is created with the preprocessing settings
applied, and the other two undergo augmentation. This
results in tripling the number of images for each source
image. The augmentations used involve rotations of 90°
rotations in clockwise, counter-clockwise, and upside-down
orientations, as well as rotations ranging from -15° to +15°.
Additionally, brightness adjustments are applied in the
range of -25% to +25%, and exposure variations between
-20% and +20% were also applied. The main purpose of
this augmentation is to introduce diversity and increase the
volume of the training dataset. These variations allow the
model to learn effectively and handle various situations that
may arise during banknote recognition.

The datasets are divided into two distinct sets: one
without augmentation and another with augmentation. The
dataset without augmentation comprises 1050 images, and
it is further split into three subsets: 60% for training (630
images), 20% for validation (210 images), and 20% for
testing (210 images). In contrast, the dataset with aug-
mentation contains 2310 images, with 82% designated for
training (1890 images) to benefit from the augmented data,
while 9% is allocated to both the validation (210 images)
and testing (210 images) subsets. These divisions allow the
model to be trained on a diverse range of data examples,
while the validation and testing sets remain consistent and
unaltered to assess the model’s performance under real-
world conditions.

C. Model Building

In this study, the performance of object detec-
tion on banknote datasets will be compared using the
YOLOVv5, YOLOv7, YOLOvS and EfficientDet methods.
The model used are YOLOvS5n, YOLOV7-tiny, YOLOvS8n
and EfficientDet-dO, selecting these specific versions for
their streamlined and lightweight architecture, making them
optimal choices for efficient object detection tasks. Each
method will be customized and trained using appropriately
labelled training data. Here are some details about the model
that was used:

1) YOLOv5n

Jocher and his team introduced the YOLOv5n detection
algorithm, which distinguishes itself through its simplic-
ity, speed, and portability [25]. The core structure of the
YOLOv5n model comprises three essential components:
Backbone, Head, and Output. To extract features, the CSP-
Darknet serves as the backbone network. Within the CSP-
Darknet, the architecture leverages both the Focus and CSP
structures. The Focus structure executes an image-slicing
index operation that transforms spatial dimensions infor-
mation into channel dimensions. This operation results in
a double downsampled feature map, enhancing the model’s
inference speed. The CSP structure adopts the design prin-
ciples from the CSPNet network, enabling the model to

acquire a richer set of features while addressing the issue
of over-computation during inference, an outcome of smart
structural design [25]. The Head component is a single head
architecture that takes the output of the backbone network
and generates predictions. The Output component converts
the predictions from the Head component into a format that
can be used for the object detection task.

2) YOLOv7-tiny

YOLOV7, is built upon the ELAN (Efficient Layer
Aggregation Network) architecture, known for its efficiency
and accuracy. YOLOv7-tiny architecture consists of three
key components: the backbone, responsible for feature
extraction using CSPNet (Cross Stage Partial Network);
the neck, which fuses features from different backbone lev-
els using E-ELAN (Extended Efficient Layer Aggregation
Network); and the head, which makes object predictions.
YOLOv7 employs novel architecture called E-ELAN, which
enhances learning capabilities through group convolution
without disrupting gradient flow paths. Furthermore, it em-
ploys a strategy of using coarse features from the neck for
the auxiliary head and fine features for the lead head, which
improves accuracy for objects of varying sizes. YOLOvV7
improves model stability and accuracy by using both aux-
iliary and lead heads, making it a significant advancement
in real-time object detection [15].

3) YOLOvSn

YOLOvV8 is an advanced real-time object detection
model that enhances YOLOVS architecture with additional
features. It improves detection accuracy by fusing con-
textual information with high-level features using the C2f
module (cross-stage partial bottleneck with two convolu-
tions). YOLOVS8 achieves higher accuracy by processing ob-
jectness, classification, and regression tasks independently
through the use of a decoupled head and an anchor-free
model approach. The model uses the softmax function for
class probabilities and the sigmoid function for objectness
score activation in the output layer. Moreover, YOLOV8
incorporates sophisticated loss functions for classification
loss and bounding box loss, such as DFL and CloU, which
enhance object detection, especially for small objects [22].

YOLOVS8n is a lightweight version of YOLOvVS that
is optimized for speed and efficiency. YOLOv8n ac-
quires residual features using an innovative C2f structure
that preserves gradient-flow information while ensuring a
lightweight design [26]. However, the YOLOvV8n archi-
tecture achieves high accuracy on object detection tasks,
making it an excellent choice for applications requiring
speed and efficiency, such as real-time object detection on
mobile devices.

4) EfficientDet-d0

EfficientDet uses the EfficientNet technique as the basis
of its architecture, which is a CNN model designed to
improve computational efficiency with respect to limited
computing resources. In addition, the EfficientDet archi-
tecture also uses the BiFPN technique to combine features
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from different levels of image resolution and produce richer
and more representative features [27]. EfficientDet uses two
heads namely, Classification and Regression head. Clas-
sification Head is responsible for classifying the detected
objects into predefined classes. The Classification Head
generates confidence scores for each class of objects to be
detected, allowing EfficientDet to recognize objects more
accurately. The Regression Head is responsible for generat-
ing bounding box coordinates for each detected object, thus
allowing EfficientDet to recognize objects more precisely
[13].

5) Model Implementation

This research refrains from using pre-trained weights
or transfer learning due to the following reasons. Pre-
trained models are tailored to broader datasets like COCO,
resulting in inefficient feature extraction for banknotes.
Moreover, the absence of pre-trained models for banknote
detection limits the advantages of transfer learning [28]. To
address these challenges, we opt for a training-from-scratch
approach, enabling custom model design specifically tuned
to banknotes’ unique characteristics, reducing uncertainty,
and enhancing efficiency.

The experimentation process takes place on the Google
Colab platform, which offers a cloud-based and collabo-
rative environment for research and development. Google
Colab is favored for its accessibility, as it provides a free
and powerful computing resource, particularly beneficial for
resource-intensive tasks like deep learning [29]. The use of
Google Colab eliminates the need for extensive local hard-
ware and eases the setup process. The chosen framework,
PyTorch, continues to serve as the foundation for model
development and evaluation, as it is fully compatible with
Google Colab [29].

Two main experiments were conducted regarding model
training. First, model training was conducted without aug-
mented data, which means that the training data was not
increased by adding variance or diversity. Second, model
training was conducted with augmented data, where vari-
ous augmentation operations were applied to the training
data to introduce variety and diversity into the dataset.
Furthermore, both experiments involve a hyperparameter
tuning process. Hyperparameter tuning is the process of
optimizing key parameters of the model, such as the number
of training epochs (the number of iterations through the
entire training dataset) and the learning rate (the rate at
which the model learns from the data), to achieve optimal
model performance. In the context of this research, the focus
of hyperparameter tuning is to fine-tune these parameters
so that the model can achieve maximum performance in
detecting Indonesian Rupiah banknotes.

D. Evaluation

During the assessment step, several metrics are em-
ployed to comprehensively examine the performance of
the developed object detection model. The mAP is the
fundamental statistic for measuring performance. mAP is

a widely used object detection assessment metric. The
average precision (AP) throughout all classes is calculated
by mAP at a given IoU threshold [30].

The evaluation results are graphed to provide an in-
depth overview of the model’s efficacy. The graph displays
mean Average Precision (mAP) scores at different IoU
thresholds, with a focus on mAP@0.5 and mAP@0.5:0.95.
"mAP@(.5” denotes the average mAP at an IoU threshold
of 0.5, whereas "mAP@0.5:0.95” denotes the average mAP
calculated with a step size of 0.05 across multiple ToU
thresholds ranging from 0.5 to 0.95 [31]. This graph serves
as a valuable tool for conducting a nuanced analysis of
the model’s precision-recall trade-off at different IoU levels,
allowing for a deeper understanding of its accuracy under
varying conditions.

ITENET)

The loss function, with its components “box,” ~obj”
(objectness), and “cls” (classification), is integral to the
training and evaluation of object detection models and is
visualized as a loss graph to represent its performance over
time. The "box” component quantifies errors in bounding
box localization, ensuring alignment with ground truth [32].
”Obj” assesses the model’s ability to distinguish objects
from non-objects, contributing to accurate identification
[32]. Meanwhile, cls” gauges the model’s proficiency in
categorizing objects into predefined classes [32]. Examining
these loss functions in both training and validation phases
through the loss graph offers valuable insights into the
model’s capacity to localize objects effectively, discern their
presence, and achieve precise classification, aiding in model
refinement and optimization.

During testing, images from the dataset are processed
through the model, generating prediction results that are
meticulously compared with the ground truth labels within
the dataset. This assessment calculates key performance
indicators such as precision and recall at varying thresholds.
Moreover, the mAP@0.5 and mAP@0.5:0.95 score for the
testing is calculated based on the precision and recall met-
rics obtained, signifying the model’s overall performance.

Average inference time per image is a crucial metric
that indicates the efficiency of a device in completing image
processing tasks. It reflects the speed at which the device
can process images, with faster inference times indicating
better performance. In the context of analyzing the results of
inference time measurements on test data, an evaluation was
conducted. These measurements, recorded in milliseconds
(ms), encompassed both model implementations without
and with the application of data augmentation. The test data
comprised 210 images depicting various scenarios. Each
processed image was timed from the moment it entered the
processing phase until the result was available, providing
insights into the efficiency of the models in completing
object detection tasks.

https://journal.uob.edu.bh
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4. RESULT AND ANALYSIS

In this section, we present the results and analysis of the
experiments conducted using YOLOvS, YOLOv7, YOLOvS8
and EfficientDet, with and without data augmentation. The
experiments were carried out with specific hyperparam-
eters, including 320 epochs, an image size of 640x640,
and a batch size of 16. The evaluation metrics used for
analysis include Precision (P), Recall (R), mAP@0.5, and
mAP@0.5:0.95.

A. Training and Validation Results
1) YOLOvS

a) Without Augmentation
The results for YOLOv5 without data augmentation in
the validation set are presented in the Table ??. The line
graph shown in Figure 3 presents YOLOVS performance
without data augmentation.

train/box _loss metricsfrecall

trainjobj_loss

trainjcls_loss metrics/precision

o 200 0 200 0 200

val/box_loss metrics/mAP_0.5 metrics/mAP_0.5:0.95

Figure 3. YOLOVS5 Results without Data Augmentation

TABLE II. YOLOVS without Data Augmentation

Class P R mAP@0.5 mAP@0.5:0.95

All 0.983  0.998 0.995 0.941
1000-B  0.998 1.000 0.995 0.946
1000-D  0.989 0.974 0.995 0.934
10000-B  0.998 1.000 0.995 0.965
10000-D  1.000 1.000 0.995 0.968
100000-B  0.974  1.000 0.995 0.941
100000-D  0.986 1.000 0.995 0.904
2000-B  0.963 1.000 0.995 0.956
2000-D  0.987 1.000 0.995 0.958
20000-B  0.985 1.000 0.995 0.956
20000-D  0.991 1.000 0.995 0.942
5000-B 1.000  1.000 0.995 0.938
5000-D 0978 1.000 0.995 0.945
50000-B  0.941 1.000 0.995 0.919
50000-D  0.969 1.000 0.995 0.908

b) With Augmentation
The results for YOLOvVS with data augmentation in the
validation set are presented in Table ??. The line graph
shown in Figure 4 presents YOLOVS performance with data
augmentation.

train/box_loss train/cls_loss metrics/precision metrics/recall
0.06 0.025
0.05

0.020
0.04

0.03 0.015

002 0010
001

o 200 0 200 0 200

val/box_loss valfcls_loss metrics/mAP_0.5

metrics/mAP_0.5:0.95
0012 10 1o

0.025

0.010
0.020

0.008 0.015 06 0.6
0.015

0.006 0.010 04 04
0.010

0.004

0.005 0.002

Figure 4. YOLOVS Results with Data Augmentation

TABLE III. YOLOVS with Data Augmentation

Class P R mAP@(0.5 mAP@0.5:0.95
All 0.996 1.000 0.995 0.975
1000-B 0.997 1.000 0.995 0.960
1000-D 0.997 1.000 0.995 0.969
10000-B  0.996 1.000 0.995 0.962
10000-D  0.998 1.000 0.995 0.981
100000-B  0.994 1.000 0.995 0.970
100000-D  0.995 1.000 0.995 0.970
2000-B 0.995 1.000 0.995 0.980
2000-D 0.996 1.000 0.995 0.957
20000-B  0.993 1.000 0.995 0.989
20000-D  0.993 1.000 0.995 0.984
5000-B 0.996 1.000 0.995 0.984
5000-D 0.993 1.000 0.995 0.977
50000-B  0.996 1.000 0.995 0.981
50000-D  1.000 1.000 0.995 0.977
2) YOLOv7

a) Without Augmentation
The results for YOLOv7 without data augmentation in
the validation set are presented in the Table IV. The line
graph shown in Figure 5 presents YOLOv7 performance
without data augmentation.

Box Objectness Classification Precision Recall

0.025 —— results 0.05
0.020
0.015

0.02 0.010

0.005
o 200 o 200 0 200 0 200 0 200

val Box val Objectness val Classification mMAP@0.5
0.0150 10

MAP@0.5:0.95

00125 08
00100 06
002 00075 04 04
00050
00025

0 200 o 200 o 200 o 200 0 200

Figure 5. YOLOV7 Results without Data Augmentation

b) With Augmentation
The results for YOLOv7 with data augmentation in the
validation set are presented in the Table ??. The line graph
shown in Figure 6 presents YOLOV7 performance with data
augmentation.
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TABLE IV. YOLOv7 without Data Augmentation

Class P R mAP@0.5 mAP@0.5:0.95

All 0.992 0.995 0.997 0.927
1000-B 1.000 0.976 0.997 0.936
1000-D 1.000 0.956 0.997 0.922
10000-B  1.000 0.995 0.996 0.927
10000-D  0.988 1.000 0.996 0.947
100000-B  0.988 1.000 0.996 0.946
100000-D  0.986 1.000 0.997 0.919
2000-B 0.989 1.000 0.997 0.898
2000-D 1.000 1.000 0.997 0.924
20000-B  0.997 1.000 0.998 0.947
20000-D  0.983 1.000 0.997 0.927
5000-B 0.989 1.000 0.997 0.913
5000-D 0.990 1.000 0.997 0.929
50000-B  0.988 1.000 0.996 0.911
50000-D  0.984 1.000 0.997 0.933
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3) YOLOvS

a) Without Augmentation
The results for YOLOv8 without data augmentation in
the validation set are presented in the Table VI. The line
graph shown in Figure 7 presents YOLOVS performance
without data augmentation.

train/box_loss trainjls_loss train/dfi_loss metrics/precision(B) metricsfrecall(B)
1

—— results

05

04

03

01

200 o 200 0 200 0 200 0 200
valfbox_loss val/cls_loss val/dfi_loss metrics/mAP50(B) metrics/mAP50-95(B)

0.4 11
03 10
02 1 09

01 08 02 02
0

Figure 7. YOLOVS8 Results without Data Augmentation

TABLE VI. YOLOVS without Data Augmentation

Figure 6. YOLOV7 Results with Data Augmentation

- Class P R mAP@0.5 mAP@0.5:0.95
. All 0996 1.000  0.995 0.995
" 1000-B 1.000 1.000  0.995 0.995
1000-D  0.997 1.000  0.995 0.995
10000-B  0.996 1.000  0.995 0.995
rsos | mwsosos 10000-D  0.996 1.000  0.995 0.995
. 100000-B  0.996 1.000  0.995 0.995
ue 100000-D  0.995 1.000  0.995 0.995
- 2000-B 0996 1.000  0.995 0.995
. 2000-D  0.997 1.000  0.995 0.995
Co 20000-B  0.996 1.000  0.995 0.995
20000-D  0.995 1.000  0.995 0.995
5000-B  0.995 1.000  0.995 0.995
5000-D  0.995 1.000  0.995 0.995
50000-B  0.996 1.000  0.995 0.995
50000-D  0.996 1.000  0.995 0.995

TABLE V. YOLOv7 with Data Augmentation

Class P R mAP@0.5 mAP@0.5:0.95

All 0.995 1.000 0.998 0.954
1000-B 0.998 1.000 0.997 0.938
1000-D  0.994 1.000 0.999 0.956
10000-B  1.000 1.000 0.998 0.951
10000-D  0.996 1.000 0.998 0.964
100000-B  0.994 1.000 0.999 0.956
100000-D  0.993  1.000 0.999 0.967
2000-B 0.996 1.000 0.997 0.960
2000-D  0.994 1.000 0.999 0.959
20000-B  0.994 1.000 0.998 0.978
20000-D  0.994 1.000 0.997 0.921
5000-B  0.998 1.000 0.998 0.967
5000-D  0.993 1.000 0.997 0.952
50000-B  0.995 1.000 0.997 0.946
50000-D  0.996 1.000 0.997 0.943

b) With Augmentation
The results for YOLOvVS with data augmentation in the
validation set are presented in the Table ??. The line graph
shown in Figure 8 presents YOLOVS performance with data
augmentation.

train/box_loss
08

train/dfl_loss. metrics/precision! (B) metrics/recall(B)

07 3
06

0.4
03
02

200

val/box_loss

etrics/mAP!
7
06 25 12 F
08

05 20 11

0.4 15 06 06
03 10

02 05

01 0.0

Figure 8. YOLOVS8 Results with Data Augmentation
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TABLE VII. YOLOvS with Data Augmentation

Classification loss

Class P R mAP@0.5 mAP@0.5:0.95 300 — Classification Loss
All 0.996 1.000 0.995 0.995 250
1000-B 0.997 1.000 0.995 0.995 % 200
1000-D 0.997 1.000 0.995 0.995 5
10000-B  0.996 1.000 0.995 0.995 g
10000-D  0.996 1.000 0.995 0.995 £ 10
100000-B  0.996 1.000 0.995 0.995 %
100000-D  1.000 1.000 0.995 0.995 L
2000-B 0.998 1.000 0.995 0.995 ° o
2000-D 0.998 1.000 0.995 0.995 Regression loss
20000-B  0.994 1.000 0.995 0.995 08 — Regression loss
20000-D  0.994 1.000 0.995 0.995 .
5000-B 0.996 1.000 0.995 0.995 '
5000-D 0.996 1.000 0.995 0.995 3%
50000-B  0.995 1.000 0.995 0.995 g os
50000-D  0.995 1.000 0.995 0.995 g 0a

0.2

4) EfficientDet

The results for EfficientDet without and with data aug-
mentation in the validation set are presented in Table VIII. 00
The line graph shown in Figure 9 illustrates EfficientDet
performance without data augmentation, while Figure 10
presents EfficientDet performance with data augmentation. 200

Epoch

Total loss

—— Total loss

250

Total loss
I
G
3

TABLE VIII. EfficientDet Validation Results

]
3

mAP@0.5 mAP@0.5:0.95

Without Augmentation 0.245 0.217
With Augmentation 0.784 0.679 0 % 100 10 200 0 00

Epoch

o

-

B. Testing Results Figure 9. EfficientDet without Data Augmentation

The testing results for each model, both with and
without data augmentation, are summarized in Table IX.
TABLE IX. Testing Results

C. Inference Time Results Model mAP@0.5 mAP@0.5:0.95
Thp average inference t}me for each m.odel,' both with YOLOVS without 0.995 0.934
and without data augmentation, are summarized in Table X. .
augmentation
YOLOVS5 with 0.995 0.973
D. Analysis augmentation
In this section, we provide a comprehensive analysis of Yg&gg’gﬂg&tz‘sut 0.997 0.917
the results, covering the performance of each model, the .
impact of data augmentation. YOLOv7 V.Vlth 0.998 0.947
augmentation
I) Model Per‘formance YOLOvV8 without 0.995 0.995
YOLOV5 also performs well in both validation and augmentation
testing scenarios, and its performance benefits signif- YOLOV8 with 0.995 0.994
icantly from data augmentation. When augmentation augmentation
is applied, YOLOV5 achieves notable improvements in EfficientDet without 0.239 0.209
mAP@0.5:0.95, particularly for specific classes. This sug- augmentation

gests that YOLOVS is adaptive and can benefit from addi- EﬂicientDet.with 0.740 0.632
tional data during training. It offers a good balance between augmentation
performance and adaptability, making it a strong choice
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Figure 10. EfficientDet Results with Data Augmentation

TABLE X. Inference Time Results

Model Inference Time

YOLOVS5 without augmentation 6.7 ms
YOLOVS with augmentation 6.5 ms
YOLOvV7 without augmentation 5.8 ms
YOLOvV7 with augmentation 6.1 ms
YOLOV8 without augmentation 7.8 ms
YOLOvVS with augmentation 8.2 ms
EfficientDet without augmentation 4.9 ms
EfficientDet with augmentation 4.5 ms

for various applications. While YOLOvV5’s performance
is commendable, it falls slightly behind YOLOvVS, which
maintains consistent performance without augmentation.

YOLOV7 exhibits strong performance, especially when
data augmentation is applied, resulting in higher mAP@0.5
and mAP@0.5:0.95 scores. However, when compared to
YOLOvV8 and YOLOvS, YOLOvV7 falls slightly behind in
terms of overall performance. While YOLOvV7 offers good
results and benefits from data augmentation, it does not

outperform YOLOvVS and YOLOVS. Slightly lower mAP
scores suggest that, in comparison, YOLOv7 may have
limitations in specific scenarios where the highest precision
and recall are critical.

YOLOvV8 demonstrates consistent and robust perfor-
mance in both validation and testing scenarios. The model
excels without the need for data augmentation, showcasing
its inherent strength. This is a significant advantage, as it
implies that YOLOV8 can perform reliably in a wide range
of real-world applications where augmenting data might not
always be feasible or practical. YOLOvS maintains high
precision and recall across various classes, making it a top
performer.

Meanwhile, EfficientDet shows a lower level of accu-
racy both in validation and testing without augmentation.
However, with data augmentation, there was a significant
improvement. Loss function analysis shows that augmenta-
tion has a positive impact on EfficientDet, improving object
classification and reducing total loss.

2) Model Efficiency

YOLOVS exhibited an average inference time of 6.7 ms
without data augmentation and 6.5 ms with data augmenta-
tion. In comparison, the YOLOv7 model achieved an aver-
age inference time of 5.8 ms without data augmentation and
6.1 ms with data augmentation. On the other hand, YOLOv8
demonstrated an average inference time of 7.8 ms without
data augmentation and 8.2 ms with data augmentation.

With superior inference time efficiency, EfficientDet
showed the best performance. It achieved the average in-
ference time of 4.9 ms without data augmentation, and
4.5 ms with data augmentation. EfficientDet emerged as
a highly efficient choice for inference time, with stable
performance across the test scenarios. However, the decision
in choosing the best model should consider the balance
between accuracy and efficiency.

3) Impact of Data Augmentation

Comparing the results with and without data augmenta-
tion across all models, it’s evident that data augmentation
significantly impacts the model’s performance, particularly
in terms of mAP@0.50:0.95. Augmentation enhances the
models’ ability to generalize and detect objects under vari-
ous conditions, resulting in higher precision and recall.

The analysis of loss functions reveals the positive impact
of augmentation, particularly on YOLOvVS and EfficientDet
models, enhancing object classification and reducing total
loss. These findings offer valuable insights into the effective-
ness and adaptability of each model in the banknote object
detection task. Overall, the addition of data augmentation
proves beneficial for all models, particularly in scenarios
with tighter Intersection over Union (IOU) thresholds.

Specifically, YOLOv5 exhibits a notable increase in
mAP@0.5:0.95 when augmentation is applied, showcas-
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ing its adaptability to additional training data. Simi-
larly, YOLOvV7 demonstrates significant improvement in
mAP@0.5:0.95 with augmentation, indicating the model’s
responsiveness to data enrichment. Although YOLOvVS
maintains high performance even without augmentation,
it still benefits from data augmentation, although with
less pronounced differences in performance, suggesting its
robustness and generalization capabilities. Notably, Effi-
cientDet shows a dramatic improvement with augmentation,
emphasizing its responsiveness to enhanced training data.

These results underscore the importance of augmen-
tation in enhancing object detection performance across
different models. They provide comprehensive insights into
the effectiveness and adaptability of each model in object
detection tasks, emphasizing the value of data augmentation
in improving model performance and adaptability to diverse
scenarios.

4) Hyperparameter Tuning

Hyperparameter tuning plays a crucial role in optimizing
the performance of deep learning models. Throughout this
research, extensive efforts were dedicated to fine-tuning
these parameters. It’s noteworthy that despite these efforts,
the default hyperparameters provided for the models consis-
tently produced the best results. The number of epochs cho-
sen for training was set to 320, based on empirical evidence
indicating that YOLOVS, the baseline model, achieved its
highest accuracy at this epoch count. This decision aimed to
allow the model to iterate sufficiently through the training
data to converge to its optimal performance. Regarding the
learning rate, a value of 0.01 was used for all models.
Experimentation with different rates, including 0.1 and 0.05
for YOLOVS, did not yield satisfactory results. Higher
learning rates may lead to faster convergence but can also
cause overshooting or suboptimal solutions. Conversely,
lower learning rates promote smoother convergence and
better generalization to unseen data. By selecting a learning
rate of 0.01, the aim was to strike a balance between con-
vergence speed and generalization ability, ensuring robust
performance across diverse datasets and conditions. Despite
the exploration of alternative rates, the default value con-
sistently demonstrated superior accuracy and generalization
capabilities.

5. CONCLUSIONS AND FUTURE WORK

In this study, our primary objective was to evaluate
the performance of cutting-edge object detection mod-
els—YOLOv5, YOLOv7, YOLOv® and EfficientDet—in
the context of Indonesian Rupiah banknote detection.
Our findings indicate that YOLOv8n stands out as the
top performer in terms of accuracy, consistently deliver-
ing robust results with remarkable precision and recall.
YOLOvVS8n achieved an outstanding mAP@0.5 of 0.995 and
mAP@0.5:0.95 of 0.995, both with and without data aug-
mentation, highlighting its exceptional accuracy. YOLOv5n
also performed admirably, showcasing adaptability to addi-
tional training data and substantial improvement with data

augmentation. Without augmentation, it achieved mAP@0.5
of 0.995 and mAP@0.5:0.95 of 0.941, while with augmen-
tation, it reached mAP@0.5 of 0.995 and mAP@0.5:0.95 of
0.975, emphasizing its high precision and recall. YOLOv7-
tiny demonstrated strong performance, particularly with
data augmentation, achieving a notable mAP@0.5 of 0.997
and mAP@0.5:0.95 of 0.927 without augmentation, and
mAP@0.5 of 0.998 and mAP@0.5:0.95 of 0.954 with
augmentation, though it slightly trailed YOLOv8n and
YOLOV5n in overall performance. However, the Efficient-
Det model does not match the performance of the other
three models, with mAP@0.5 and mAP@0.5:0.95 values
of 0.740 and 0.632, even with the application of data
augmentation. Data augmentation significantly enhanced
model performance, improving their generalization and ob-
ject detection capabilities, with YOLOv5 and EfficientDet
benefiting the most from increased data diversity.

In terms of inference time, EfficientDet stands out
as a highly efficient model with the lowest time of 4.9
ms without augmentation and 4.5 ms with augmentation.
However, it should be noted that this advantage comes
with low accuracy. YOLOv7 also proved to be efficient
with an inference time of 5.8 ms without augmentation
and 6.1 ms with augmentation, making it the second most
efficient model. YOLOVS5 shows quite good efficiency with
an inference time of about 6.7 ms without augmentation and
6.5 ms with augmentation. On the other hand, YOLOVS,
although slightly less efficient, provides adequate perfor-
mance with an inference time of about 7.8 ms without
augmentation and 8.2 ms with augmentation. In choosing
the best model, consideration is needed regarding the bal-
ance between accuracy and efficiency of inference time.
The YOLOv8 and YOLOv5 models can be considered as
superior choices, depending on the prioritization between
accuracy and efficiency.

Future work includes developing a mobile app with
the most effective model for real-time Indonesian Rupiah
banknote recognition, prioritizing mobile optimization, user
feedback, and usability enhancements. Integration of fea-
tures such as voice commands and multi-currency support
will be explored. Extensive real-world testing with visually
impaired users is planned to validate the app’s effectiveness
in improving their financial independence and daily trans-
action experiences.

6. LIMITATIONS AND CHALLENGES

The data collection process had limitations that could
have influenced the dataset’s representativeness and gener-
alizability. Sampling bias was a concern due to limitations
in capturing diverse scenarios and differences in image
quality from mobile phone cameras. While efforts were
made to include a wide range of environmental conditions
and lighting scenarios in the dataset, it’s possible that some
conditions were not adequately represented. Furthermore,
focusing solely on 2022 Rupiah banknotes and taking
separate images for each denomination may result in im-
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balances. Additionally, ensuring consistency and accuracy
in the manual annotation and labeling process posed chal-
lenges, potentially affecting dataset reliability. Recognizing
these challenges is essential to improving the quality of
datasets and guaranteeing the validity of research findings.
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