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Abstract: This work explores a novel method of SCA profiling to address compatibility problems and strengthen Deep Learning (DL)
models. Convolutional Neural Networks are proposed in this research as a countermeasure to misalignment-focused countermeasures.
”Time-Delay Convolutional Neural Networks” (TDCNN) is more accurate than ”Convolutional Neural Network,” yet it’s still acceptable.
It’s true that TDCNNs are neural networks based on convolution learned on single spatial information, just as side-channel tracings.
However, given to recent surge in popularity of CNNs, particularly from the year 2012 when CNN framework (”AlexNet”) achieved
Image Net Large Scale Visual Recognition Competition which is a notable image detection competition, a novel TDCNN has been
termed out in DL literature. Currently, it needs to employ the characteristics related to CNN design, including declaring that one input
feature equals 1 for instance, to establish a TDCNN in the most widely used DL libraries.
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1. INTRODUCTION
We focus on deep learning (DL) methods, and convolu-

tional neural networks (CNNs) in particular, in the context
of cryptographic implementations that are guarded by coun-
termeasures that try to make side-channel acquisitions more
misaligned or desynchronized. The second group of safe-
guards could be software-based (such as the introduction of
random delays via dummy operations) or hardware-based
(such as unpredictable clocks or non-deterministic CPUs)
[1], [2].

As in the leaking model suggested in [3], desynchro-
nization could be seen as an acquisition noise component.
In any case, it amplifies the background noise that conceals
private data in the traces. If the assault method, in terms
of exploiting statistical tools, stays the same, raising the
total amount of acquires by a measure that is substantially
proportional in the misalignment impact, as stated in [4],
could be sufficient to render the attack equally successful as
in a synchronised situation. This is a theoretically satisfying
answer from a statistical perspective to such a noise rise.
Such an augmentation cannot be feasible in real life due
to several factors. To start, the acquisition campaign could
be time-or memory-bound for the attacker or evaluator.

Secondly, the compromised system can block an infinite
number of executions by implementing a security measure.
Thirdly, rather than increasing linearly with the quantity
of data to be analysed, the level of complexity of attack
techniques can develop in a cubic pattern with an increasing
amount of traces. The KDA analysis for non-linear extrac-
tion of features is one instance of this.

To address misaligned trace sets, the second method
suggested in SCA literature is to do realignment prepro-
cessing before to the assault. It is possible to classify
realignment approaches into two groups: one focused on
signal processing (see, for example, [5]) and better suited to
hardware countermeasures; and another, more probabilistic
in nature (see, for example, [6]), designed for detecting fake
operations (software countermeasures).

We discovered that Convolutional Neural Networks pro-
vide the potential for end-to-end profiling attacks, where
sensitive information can be directly extracted from raw
data without the need for any preprocessing. We are of
the opinion that dimensionality reduction approaches and
realignments both carry the danger of erasing valuable
information from data. Indeed, in order to get a well-
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synchronized dataset, a realignment method modifies sig-
nals so that traces are somewhat comparable to one another.
One the one hand, determining if the preprocessing was
satisfactory by assessing the precision of a realignment
is not an easy task. A realignment’s purpose, however, is
not to glean discriminatory and sensitive information from
traces. Attempts to realign the trace set can potentially
remove important information, even if we could prove
that a resynchronization is flawless using certain criteria.
The excellent scalability of CNNs and DL technologies in
general to ”big-data” settings is making them stand out
nowadays. Their ability to readily take use of computing
resources, such as graphics processing units (GPUs) or the
so-called Tensor Processing Units (TPUs) designed specif-
ically for neural networks (NNs), enables computational
accelerations, which is one of their strengths. With more
data at hand, ML models can learn more complicated issues
with less risk of overfitting, and larger capacities mean more
data to work with. The ever-increasing data availability and
NNs’ scalability, according to this opinion, are the major
reasons for their recent success. Data Augmentation (DA)
is a strategy in machine learning literature that can help
large capacity NNs avoid overfitting and perform effectively,
even in situations where there can be little data, such as
side-channel settings with limited acquisitions.

A. Objectives
The objectives of our proposed research work are as

follows,

1) Using the time leaking patterns identified in side-
channel data and accurately modeling them are the
major objectives. In order for TDCNNs to capture
temporal linkages, neural layers are enhanced with
time delays.

2) Due to their ability to quickly learn vital features,
TDCNNs are able to detect subtle leakage patterns
that can go unnoticed by more conventional research
approaches.

3) The objective is to increase attack efficiency and ac-
curacy by exploiting both geographical and temporal
connections in side-channel data. Cryptographic keys
and other sensitive information can be located more
quickly and precisely manner.

B. Contributions
Our major contributions in this research work are listed

below,

1) It has been observed that the improvement in SCA
detection performance by introducing delays in the
convolutional layers in TDCNNs

2) Instead of requiring human intervention for feature
developing, TDCNNs autonomously train discrimi-
native features from raw side-channel traces.

3) TDCNNs are more resilient in real-world situations
because they can learn to differentiate between real
leakage patterns and noise.

2. Literature review
Many studies have focused on detecting Side-Channel

Attacks (SCAs) using CNNs. The works of some notable
authors from that year are listed below:

Using deep learning and CNNs, Jin et al. [5] investigated
side-channel analysis. This research looked into how well
CNN architectures could mine side-channel leakage traces
for useful characteristics. Findings from this study showed
that CNNs are a promising tool for automating feature
extraction with the goal of enhancing side-channel attack
awareness. The authors demonstrated that CNNs can learn
discriminative features from raw side-channel data, which
could mean that human feature engineers won’t be needed
to identify side-channel attacks.

Panoff et al. [6] presented a great deal of their research
to study CNNs and other deep learning approaches for
side-channel analysis. For the purpose of practicing side-
channel attacks, a variety of network setups and training
methodologies were used. Experiment design and model
tweaking were crucial for comprehending CNNs and other
deep learning methods for side-channel studies. This part
of the procedure was crucial. The authors compared CNNs
to other deep learning methods in order to identify the
parameters that impact side-channel attack detection using
deep learning.

The encryption solution that Ahmed and his co-authors
[7] proposed uses deep learning and convolutional neural
networks to prevent side-channel attacks. Using deep neural
networks to automate feature extraction allowed them to
improve profiled side-channel attacks. This study claims
that CNNs were used to detect side-channel attacks by
automatically extracting data from side-channel leakage
traces. Profiled attacks can become more successful and
scalable if this happens. The authors’ study proved that
side-channel analysis and deep learning can automate fea-
ture extraction, which means domain-specific expertise and
manually constructed features won’t be needed to identify
side-channel attacks. The need for designs customised to
certain domains was met by Zhang et al. [8] with their
convolutional neural network (CNN) architecture for power
side-channel attacks. Several benefits are associated with
this approach. The study’s overarching goal is to provide
light on key recovery mechanisms by means of power
consumption traces. Both precision and productivity are
enhanced in the end by this.

The design cannot be applicable to other forms of side-
channel leakage, such electromagnetic emissions, since its
main emphasis is power side-channel attacks. We can learn
more about the framework’s pros and cons by comparing
it to other methods that have been tested and found to
function. By presenting domain adaptation approaches that
are exclusive to CNNs, this study by Palisse et al. [9]
addresses the issue of domain shift in side-channel attack
detection. This is a good thing about the research. Improved
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CNN model transferability from synthetic to real-world
data could lead to enhanced CNN model robustness and
generalizability, as shown in the aforementioned methodolo-
gies. There is a chance that computational complexity and
scalability will both rise when CNN systems include domain
adaptation mechanisms. Given the scale and distribution of
the dataset, it is probable that more testing in real-world
settings is necessary for domain adaptation methodologies.

Ou et al. [10] provide efficient methods for enhancing
data to make models more generalizable and resilient.

Additionally, these techniques address the issue of in-
sufficiently tagged data in detecting side-channel attacks.
Convolutional neural network (CNN) models trained for
side-channel analysis can benefit from a more robust and
efficient training set. The availability and quality of training
datasets could limit the efficiency of data augmentation
methodologies, which in turn limits their applicability to
different circumstances. In order to correctly analyze the
work’s performance and efficacy, it could be helpful to do
thorough dataset evaluations and compare it with alternative
augmentation techniques.

Hettiarachchi et al. [11] state that deep learning ap-
proaches, which take into account both the topography
and the side channels, can help build robust defenses
against side-channel attacks. The findings could be helpful
in improving security measures against side-channel attacks
by tackling the increasing risks and suggesting appropriate
response tactics. Researching certain methodology or strate-
gies in detail can be challenging since the study includes
such a wide variety of subjects related to side-channel
attacks and countermeasures. Additional experimental vali-
dation and analysis can be necessary to assess the efficacy
and scalability of the suggested attack and defensive tactics
to other situations and datasets.

3. Methodology
In this case, the NNs value the results of the categoriza-

tion task. Here, Z’s components, which stand for classes
set, were represented using one-hot encrypting technique,
and, as we recall from groping problem, learning algorithm
are expected in producing F : RD→ 0, 1|Z| function. Since
“Z” is function’s categorical output, it is a continuous finite
set. One variation of the categorization job is to find an
expression F : RD → [0, 1]|Z| that establishes a dispersal
of probabilities across groups. Our favoured formulation is
the last one since it makes it easier to execute both simple
and sophisticated attacks by giving us easy access to the
categorization solution.Developing discriminative models,
which seek to directly simulate the subsequent contingent
likelihood of labelling given the observed trace, represented
as F, is an efficient application of NNs in this context.
TAs are based on the construction of dynamic models, or
approximate the templates. When a label is applied, these
models ought to match the conditioned likelihoods of the
trace.

With NNs, a large number of smaller functions, or lay-
ers, are combined to generate the function F. The identity is
stored over the source datum x in the layer of inputs, which
is the main layer of a neural network. All levels between
are hidden layers, and the output layer is the last layer. The
output of F is an array y of numbers for the |Z| labels, with
a size of |Z|. These vector can be a common approximating
function for distribution of probabilities distribution. For
us, this tends to work. Quantity and dimensions of tiers
that comprise the network are particularly referred to as
the NN’s architecture. All of the characteristics that specify
a building’s design and a few additional ones regulate the
training process. The network’s computational components,
dubbed neurons after its namesake, generate the product
of scalars among the input dimensions and the vector of
weights that require training, or trainable weights. In the
layer below, new input vectors are created based on the
evaluation outcomes of neurons in that layer. As we’ll
see, operating linearly — that were products of scalar
which neurons processes — often establish the weights
that are trainable of a neural network. Neural networks can
be programmed to operate in simultaneously and GPUs
are reasonably efficient at processing and differentiating
between them.

Multi-Layer Perceptrons (MLPs), sometimes referred
to as Feedforward Neural Networks, are one type of NN
design. A function, such as F, which has both non-linear and
linear components, is connected to MLPs. the activations.
The word ”feedforward” describes a model in which data
goes straight from the input to the output without any kind
of feedback loop, meaning that the model’s outputs do not
feed back into itself. That goes against the very principles of
what are known as Recurrent Neural Network architectures.
A generalisation of the MLPs is the CNNs.

Here is one way to represent a typical MLP that is
focused on classification:

F
(
x⃗
)
= s ◦ λn ◦ σn−1 ◦ λn−1 ◦ · · · ◦ λ1

(
x⃗
)
= y⃗ (1)

Where Most of the time, the λi functions are affine functions
that can be represented as Fully-Connected (FC) layers.
For instance, an FC that receives an input of x ∈ RD
will produce an output of Axe + b, where b is a bias
vectors ∈ RCand A is the weight matrix ∈ RD × C. The
biases and weights are trainable of FC substrates. Because
A[i, j] weight ties every i-th feeding coordinates to every j-
th outcome, they are known as fully-connected. It is possible
to think of FC layers as a specific example of the linear
layers found in generic network designs because not all
interconnections are present in them. Setting the (i, j)-th
coordinates of Matrix A to 0 will formalise it as containing
no (i, j)-th linkages.

The σi represents what are known as activation functions
(ACT). A realistic non-linear functional that is applied
independently to each and every input coordinate is called
an activation function. Frequently, using trainable weights
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is not necessary. Since they have functions similar to the
logical sigmoid, which is likewise represented by σ, we
usually reference to them as σ. In actuality, actual measure,
restricted, differentiable functions, monotonic consisting of
positive primary derivative are typically suggested for sig-
moidal functions. Rectified linear unit (ReLU), regrettably,
ReLU(x)[i] = max(0, x[i]), which was first introduced by
[7], is an equation that is most frequently cited in current
neural network research. Even though such is non sig-
moidal—definitely, which are unbounded nor differentiable-
it is nevertheless piecewise linear, which allows for the
maintenance of most characteristics which generates lin-
ear prototypes less difficult to maximise using gradient-
dependent technique.

s
(
x⃗
)

[i] =
ex⃗[i]∑

jex⃗[i]
(2)

s is shorthand for softmax1 function.

The softmax function is the final layer used by most
neural network classifiers. Because of this, model F can
be viewed as an improved extended version of the binaries
classifier, with the softmax acting as the sigmoid’s replace-
ment in the multi-class model and all of the earlier layers
of F acting as linear arguments. The previous layers are
responsible for handling any preprocessing and forecasting
the unnormalized log probabilities. Normalising the output
scores to fit the distribution of probabilities F(x) ≈ pZ|X =
x is the goal of the softmax.

4. Learning Algorithm
A neural network’s weights are adjusted in the training

phase. They start with an arbitrary collection of values.
Subsequently, they are updated by an iterative process that
eliminates a loss function that gauges functions F(X)’s clas-
sification error for set of training. An (Stochastic) gradient
descent method is used locally in this method [8].

A. Training
When all of the training data is processed before making

any changes to the weights, it was observed that the NN
was trained using complete batch learning. The inverse is
true when dealing with stochastic approaches, which only
handle one training input at a time. In reality, a middle
ground strategy known as mini-batch learning is generally
used. This method involves learning with tiny batches, or
groupings of training inputs, at a time.

Epochs are iterations of the Stochastic Gradient Descent
that cover the whole training dataset. Hyperparameters also
include the number of epochs. It stands to reason that
underfitting can result from using a small number of epochs,
whereas overfitting could occur from using a large number
of epochs. It can be choosen to use the so-called early
halting technique [10] in our studies to sidestep the need to
tune the number of epochs in advance. The first step is to
decide on a stop criteria that will be used throughout the

training. Typically, the decision is made when the validation
accuracies or losses remain stable or deteriorate over time.

B. Entropy Cross Metric
This is frequently used as default, is one conven-

tional technique for generating the loss functions of a
classification-oriented neural network [10]. It can be op-
timised using conventional gradient-based approaches as
it is smooth and decomposable. Here, zi and yi are the
probability mass functions that describe two distributions;
the cross-entropy between them provides a measure of how
different they are.

H
(
x⃗i, Y⃗i

)
= H
(⃗
zi
)
+ DKL

(⃗
zi||Y⃗i

)
= Ez⃗i

[
−logy⃗i

]
= −

|Z|∑
t=1

z⃗i [t] logy⃗i [t]
(3)

where the entropy is represented by H and the Kullback-
Leibler divergence is denoted by DKL [11]. Therefore, This
idea is similar to the negative log-likelihood expression in
3 and comes from the field of information theory. The
loss function 3 remains a cross-entropy amounted on entire
sets of traces in that batches. There are two ways to
look at minimising it: either decreasing dissimilarity among
estimation of network, what distribution is and required by
us for approximation, or optimising a-posterior probabilities
of the accurate label. It has chosen to use the loss functional
2 for our research. Conversely, alternative metrics can be
investigated in order to yield more advantageous results
[12].

For the experiments listed below, in two subsets side-
channel profiling collection will be divided by us: a set to
be trained and a validation set. The NN’s parameters will
be updated by sequential processing of the set of training
data. It is typical practice to use the validation set at the
conclusion of each epoch to keep an eye on training, and
more specifically to detect when overfitting is about to
happen. Surprisingly, it has not been used cross-validation
to enhance the precision of our observation. Alternatively, it
has been assessed that the trained model’s and the resulting
attack strategy’s performance on the classification task using
a side-channel attack set.

C. Attack Strategy with an MLP
This method of SCA with an MLP apart from the

conventional Pattern Approach. A generative model un-
derpins TA, whereas a discriminative one is built using
MLPs; this is the key distinction. It is true that TA uses
prior estimations for the templates, while MLPs directly
estimate the posterior probability F(x) ≈ pZ|X = x. The
next step in the attack plan for both techniques is identical
when this approximation is completed. By acquiring pairs
(xi, ei) i = 1, . . . ,Na, New attack traces are discovered by
the attacker, which he can only associate with the public
variable E. Afterwards, he establishes important hypotheses
k ∈ K and, assuming that every acquisition represents a
separate observation of X, he assigns a score dk to each
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hypothesis k ∈ K. This score is rewritten in terms of the
MLP model as:

dk =

Na∏
i=1

F
(
x⃗
) [

f (k, ei)
]

(4)

In the end, the optimal option for the crucial role k̂ is the
one that maximises the joint probability.

k̂ = argmax
k

dk (5)

5. Performance Estimation
A. Maximal Accuracies and Confusion Matrix

One of the majority popular metrics used to monitor and
assess a classification-oriented NN is its accuracy. When
applied to a dataset, accuracy is the percentage of correct
classifications. A model’s accuracy can be defined as the
percentage of correct classifications made over all training,
test sets and validation respectively. After every conclusion
session, estimate and compare the accuracy of the validation
and training; this is useful. We reasoned that adding these
two more parameters to our research would be intriguing.

• The greatest training accuracy, which is determined
at the conclusion of each epoch by adding together
all training accuracies;

• The maximum validation accuracy, which is the total
of all validation accuracy calculations made at the
conclusion of each period.

Along with the two metrics mentioned above, we will
additionally compute a test accuracy to assess how well
our trained model performed. It can occasionally be useful
to look at the referred to as confusion matrix in order to
complete this assessment. In fact, the latter matrix makes
it possible to identify the confused classes in the process
of misclassification. It is possible to infer the distribution
of the pairs (real label, predicted label) from the test set’s
classification results, and this distribution gives rise to the
confusion matrix. A confusion matrix with diagonal entries
represents a test accuracy of 100%.

B. Side-Channel-Oriented Metrics
Although it is directly related in comparison to the side-

channel language achievement rate of a Modest Attack, the
accuracy measure is well-suited to the machine learning
classification challenge. The accuracy measure is insuffi-
cient to assess the attack performance when the attacker
can get many traces with different plaintexts. While a SCA
considers all labels, this statistic just considers the one
associated with the highest score. This observation is taken
into consideration by consistently linking the test accuracy
to a side-channel metric. The fewest possible N about side-
channel traces required to guarantee that the predicting
entropy is always identical to one is the definition of this
measure. Using ten separate assaults, we will attempt to
determine such a guessing entropy in our trials.

6. Convolutional Neural Networks
By adding a pooling layer and a referred to as the convo-

lutional layer, which uses convolutional filtering, Convolu-
tional Neural Networks (CNNs) strengthen the conventional
Multi-Layer Perceptron (MLP) model against misalignment.
We will go into detail about these two specific levels later
on.

The linear layers known as convolutional layers (CONV)
share their weights in all directions. Since CNNs were
initially developed for images, Figure 1 presents an alter-
native representation from the most common one, which
organises tier interactions resembling 3D-patterns (depth,
height and weight) [13]. Similar to side-channel traces,
Figure 1 depicts a 2D convolutional neural network, or
CNN, tuned for 1D data. Convolutional filters, which are
small matrices with an area of W × V (where W is the
kernel size), can be moved down the segments measurement
of input in 1D data. Through fixed number strides, to
apply CONV on an input with initial width V of 1 and
size D × V. Filters through window (termed a patches in
machine learning) that creates new matrix of size 1 × n
filter from W × V successive data points. The way these
matrices are arranged indicates that the n filter represents
the layer output depth. Several parameters, including as the
input dimension, stride, and padding, influence the output
length metric of a convolutional layer. The two most widely
used techniques for input padding are ”valid padding” and
”same padding.”The former ensures that with a stride of
1, outcome having same duration as inputs; concerning 2
stride, duration of input remains precisely half; for a stride
of 3, it is exactly split by 3; and so on. This is achieved by
preceding and following the input with a string of zeros.
The best way to handle padding is to avoid using any
kind of cushioning at all. Since only information that is
valid readings were utilized like inputs, resultant duration
is aligned accordingly, output duration is often equal to
D − W + 1 when the stride length is set to 1. Among
the model’s trainable weights are the window’s coordinates.
The input is multiplied by various portions of the datum as
they slide over it, but they are bounded to remain unaltered
while sliding, meaning they must act consistently regardless
of where entries at input are on globalised input data.
The purpose of such restriction is in ensuring that CONV
substrate can acquire data features that are unaffected by
changes in location, sometimes known as shift-invariant
features. CNNs were developed because to the prevalence
of shift-invariant features in image recognition environ-
ment. A person’s eyes, nose, and mouth, for instance, are
distinguishing characteristics of that person regardless of
where they are in the photograph. Convolutional neural
networks (CNNs) are resistant to geometric distortions [14]
and temporal distortion when taking side-channel data into
account because of their capacity to find shift-invariant
features. This is why they can successfully countermeasures
based on misalignment.
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Figure 1. Layers of Convolution. Bottom: V=3, W=2, nfilter=4. Top:
V=1, W=2, nfilter=3, stride=1

A. Layers for pooling (POOL)
The most popular example of a convolutional layer is an

array having stride equivalent to 1, identical padding; size
of output is identical to its input size multiplied by n filter.
As more data is added throughout the tiers, the complexity
exponentially grows when several of these convolutional
layers are layered. The installation of pooling (POOL)
layers is suggested as a means to prevent this complexity
growth. Non-linear POOL layers shrink the spatial dimen-
sion (see to Figure 2). As CONV layers, their function is to
filter the incoming data as it comes in. The filter has a length
of W and is one-dimensional. The stride is usually chosen
to match the length; in Figure 2, for example, both stride
and length are set to 3, guaranteeing chosen input segments
is non overlapping. Layers of Convolution have trainable
weights, whereas pooling filters do not. Rather, they just
select a segment by swiping over the input, and then they
implement a pooling function. Max-pooling and average-
pooling are two common pooling functions. Whereas the
latter delivers the median of the segment’s coordinates, the
former returns the greatest values throughout the segment.

Figure 2. Max-pooling layer: W = stride = 3

B. Common Architecture
A CNN is constructed with an ACT layer and a CONV

layer as its main building pieces. The first one uses filters to
extract data from the input at a local level, while the second
one uses non-linearity to boost the model’s capacity. It is
common practice to add a POOL layer δ after a few (σ◦γ)
blocks in order to decrease the total number of neurons:
δ ◦ [σ ◦ γ]n2. The network iteratively generates this new
block until it reaches a sizeable output.

The next step is to include some FCs so that we can get
a global output that is dependent on the whole input and
not just local characteristics. This formula summarises the
most prevalent features of convolutional networks:

s ◦ [λ]n1 ◦
[
δ ◦
[
σ ◦ γ

]n2
]n3 (6)

Layer by layer, the network employs convolution filters to
boost spatial depth, activation functions to introduce non-
linearity, and pooling layers to reduce the size of objects that
are spatial (or temporal, if side-channel traces are included).
When narrow and deep showcasing gets structured, more
or one layers of FC gets attached to it through application
function of softmax. A CNN design in operation are shown
in Figure 3.

Figure 3. Proposed CNN architecture
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C. Datasets
The use of cryptographic device traces in training TD-

CNNs to detect side-channel attacks is widespread. These
remnants can point to power usage, electromagnetic inter-
ference, or other side-channel data lost from the device
during cryptographic calculations. Testing was conducted
using the DPA Contest v3. Standard datasets for side-
channel inquiry are those that are part of the DPA Contest
v3. Several distinct cryptography systems are the sources
of the power usage traces. The DPA Contest v3 datasets
include a large number of traces for both plaintexts and
key values. Various implementations, including AES, DES,
and RSA [20], use these traces. The inclusion of power
consumption indications from the cryptographic devices
being assessed is the most distinctive aspect of DPAContest
datasets. Cryptographic operations, including encryption
and decoding, leave traces that show how much power
is being utilized. Oscilloscopes and other measurement
instruments can get traces as discrete samples.

7. Results and discussions
A conventional mechanical countermeasure against side-

channel assaults is to introduce clock instability. The result
is a misalignment of the enemy’s traces and a deforming
effect that builds up and impacts every gained clock cycle.
Actually, different numbers of time samples are used to
sample clock cycles throughout the assault since their
durations are not uniform. Since there is a certain clock
cycle to align with, it is not enough to just translate the
acquisitions. Such deformations can be managed with the
use of certain realignment methods, such as [15]. Here, we
want to demonstrate that the realignment pre-processing can
be eliminated, allowing the CNN deep structure to implicitly
handle it.

A. Performances over Artificial Augmented Clock Jitter
The results obtained for double datasets,

DS high jitter and DS low jitter, are shown here.
Ten thousand tagged traces and one hundred thousand
attack traces are utilised for training (more precisely, nine
thousand for training and one thousand for validation)
in each. One thousand eight hundred sixty time samples
make up the traces. The two sets of data were created by
intentionally interpolating a jitter effect over a subset of the
original, synchronised traces. The same Atmega328P CPU
was used for measuring the original traces. We discovered
that 34 instructions had leaks at the beginning, including
two nops, sixteen NVM loads and sixteen look-up table
accesses. Our experimentation of attack are assuming
that 19th clock cycle-the first look-up table access-is the
intended target. Z = HW(S box(P/K)) is the name of
the critical variable. We were able to reproduce the jitter
effect using the DS low jitter dataset (sigma = 4 and
B = 2) and DS high jitter dataset (B = 4 and sigma =
6). Desynchronization increases with time, thus we can
observe the cumulative effect of the jitter; Figure 2 displays
few tracings of DS high jitter and DS low jitter. Few traces
regarding both DS high and DS low jitter are displayed in

Figure 2. Without performing any point-of-interest (PoI)
selection on each dataset, we entered the entire collection
of traces into our CNN.

It’s been helped with a severe overfitting problem once
again, and this time it was able to lessen it by using the
newly-introduced DA method. This research work trains the
CNN model using nine permutations of the shifting defor-
mation SHT and the add-remove deformation ARR, with
T = 200 and T ∈ {0, 20, 40} and R ∈ {0, 100, 200}, respec-
tively. To further demonstrate that the DA’s advantages are
limited, it has been conducted a second experiment using
SH200AR500, which has much higher DA values. The results
were poorer than those with, say, SH40AR200, since, as
predicted, excessive deformation negatively impacts CNN
performances.

Table I summarises findings that were obtained during
our experimentation. Case SH0AR0 is a reference that has
experienced overfitting as it relates to a training that did
not use the DA approach. Accuracy of validation enhances
and accuracy of training downfalls as DA parameters are
increased. This demonstrates through trial how well the
DA approach reduces overfitting. Take the SH100AR40 DS
low jitter dataset scenario as an example. There are times
when highest accuracy of validation is more compared to
best precision of training. Figure 4 shows the accuracies
acquired in this scenario, epoch by epoch, for both training
and validation. It is clear that the peculiar relationship
between training and validation accuracies is maintained
practically epoch after epoch, and it is not limited to the
maximum values. It is not the result of some unfortunate
erroneous estimates, as can be shown in the figure, since
this occurrence happens at several epochs. In order to
make sense of this occurrence, as it can be seen that
the training collection also contains material that has been
made enhanced—that is, corrupted through DA—whereas
sets of verification set solely consist of non-augmented
information. CNN can have been effective at extracting the
relevant features for the original data categorization, but it
cannot have learned how to categorise the enriched data, as
evidenced by the observation that its validation efficiency is
higher than the acquired training accuracy. Our observations
about the DA approaches indicate that they perform well
when used singly and much better when combined.

Based on our findings in Table I, the model gener-
ated using the SH200AR40 approach was selected concern-
ing DS low jitter information set, thus model generated
by deploying SH200AR20 technique was selected for the
DS higher jitter dataset. Their findings are contrasted
with those of a realignment technique and a Gaussian TA
in Figure 4. In our experiment, when the training curve
is smooth while the validation curve fluctuates drastically,
is due to the overfitting problem. Overfitting refers to the
process whereby the model learns how to do well on the
training data only but fails in generalizing in future unseen
examples.
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TABLE I. The output of our CNN when subjected to several DA methods with an artificially-generated jitter countermeasure

DS low jitter

a b SH0 SH20 SH40 SH200c d

AR0
100.0% 68.7% 99.8% 86.1% 98.9% 84.1%
57.4% 14 82.5% 6 83.6% 6

AR100
87.7% 88.2% 82.4% 88.4% 81.9% 89.6%
86.0% 6 87.0% 5 87.5% 6

AR200
83.2% 88.6% 81.4% 86.9% 80.6% 88.9%
88.6% 6 85.7% 6 87.7% 5

AR500
85.0% 88.6%
86.2% 5

DS high jitter

a b SH0 SH20 SH40 SH200c d

AR0
100.0% 45.0% 100.0% 60.0% 98.5% 67.6%
40.6% 35 51.1% 9 62.4% 11

AR100
90.4% 57.3% 76.6% 73.6% 78.5% 76.4%
50.2% 15 72.4% 11 73.5% 9

AR200
83.1% 67.7% 82.0% 77.1% 82.6% 77.0%
64.0% 11 75.5% 8 74.4% 8

AR500
83.6% 73.4%
68.2% 11

Figure 4. CNN model training using DA SH100AR40. As the
difficulty of the training classification issue rises relative to that of
the actual classification problem, the validation accuracy remains
consistently greater

In most cases this leads to a situation in which the
model’s performance continue to have a smooth training
curve while it’s performance on validation data decrease
or undergoes fluctuations. Numerous tests of cutting-edge
Gaussian TA have improved this comparison. This research
work employs a simple realignment strategy, whereby,

firstly identify the peaks that exceed a threshold and then
keep all the data within a window surrounding these peaks.
This is because, with experiment, leakage accumulates in
peaks which were easy visible because of their compar-
atively large amplitude. Then, two methods were used to
choose the points of interest (PoIs): first, it was picked
3–20 points that maximised the estimated instantaneous
signal-to-noise ratio (SNR), and second, it was picked
sliding windows of 3–20 points that covered the PoI area
in sequential order. While processing the templates, (1) it
was tested the traditional method [16], which estimates a
class-specific mean and covariance matrix, (2) implemented
the pooled covariance matrix technique [17], and [18] tested
the stochastic method [19], [20]. It was used a stochastic
technique across windows of varying sizes, and the best
results are shown in Figure 5. In comparison to the Gaussian
templates, the CNN method achieves much better results,
regardless of whether realignment is used or not. This
verifies that the CNN method is resilient to the jitter effect:
the realignment that is built into the training phase and the
selection of points of interest work.
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Figure 5. The comparison shows the CNN approach and a Gaussian
template attack throughout DS low jitter and DS high jitter, corre-
spondingly, with and without realignment

B. Significant Findings
Following are the significant outcomes observed during

the experiment.

1) TDCNNs’ ability to automatically learn discrim-
inative features from side-channel traces, feature
engineering is no longer necessary for their detection
of side-channel attacks. This has led to considerable
breakthroughs in the field. This work has simplified
the detection of side-channel attacks without requir-
ing domain-specific traits or specialist knowledge.

2) Regardless of device heterogeneity, environmental
variables, and countermeasures, the side-channel
leakage resistance of TDCNNs has been shown.
Their ability to identify side-channel attacks on
various cryptographic systems is due to their ability
to adapt to different leakage patterns and noise levels.

3) In the presence of complex leakage patterns, TD-
CNNs outperform conventional side-channel attack
detection approaches. Their exceptional performance
is a result of their remarkable comprehension of
complex patterns and relationships in side-channel
traces.

4) Successful testing of TDCNNs in discovering cryp-
tographic equipment vulnerabilities can be con-
ducted using a variety of real-world side-channel
attack scenarios.

C. Limitations of our Study
When it comes to detecting side-channel attacks, TDC-

NNs have a few drawbacks despite their many advantages:

1) It is conceivable that TDCNNs will fail when the
leakage patterns are significantly non-linear or have
long-term dependencies outside of the network’s
receptive area.

2) Because of the enormous size of datasets and com-
plicated topologies involved, training TDCNN is
computationally costly and takes a long time. This
could cause problems in practical production settings
when time or resources are limited.

8. Conclusions
In this section, it has been successfully outlined scratch

to top profile attack approach that depends over CNN. Here,
it has been demonstrated regarding our hypothesis—that
the proposed models will continue to be efficient though
in midst of misaligned traces was valid by executing CNN-
based attacks on several kinds of misaligned data. Unlike
state-of-the-art Template Attacks, which need painstaking
trace realignment for optimal performance, this character-
istic offers a significant practical benefit. In comparison to
standard TA, our CNN-based approach varies in two key
respects. To begin with, rather of a generative model, it
employs a discriminative one. Second, it incorporates all of
the preprocessing steps that will be required for a TA to
be effective into a single training phase. In fact, it not only
solves the problem of selecting PoIs, but it also eliminates
the need for trace realignment, which is irrelevant to the
CNN approach: The attacker can easily choose big windows
since CNNs handle high-dimensional data effectively. Our
CNN can collect data with nearly no instantaneous signal-
to-noise ratio from a variety of sources because the results
are very indicative of the real world. Using a CNN with a bit
of complicated architecture, it was able to address the traces
misalignment and successfully pinpoint the overfitting prob-
lems. To tackle this fundamental machine learning issue,
it has been introduced two Data Augmentation techniques
designed for misaligned side-channel traces. Our testing
findings consistently demonstrate their valuable contribution
to the CNN approach. In this work, it was presented the
attacks that target implementations that do not use masks.
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