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Abstract: In December 2019 a highly infectious virus named ‘Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2)
sparked a global pandemic. Deep Neural Networks have been extensively used to develop intelligent systems for accurate and timely
diagnosis of COVID-19 infection using chest Computerized Tomography. However, Deep Learning approaches require a large annotated
dataset. The fundamental goal of this research is to develop a model that would learn efficiently from a size-limited dataset. This
study proposes a hybrid feature extraction approach. Our proposed technique exploits the CT imaging characteristics of COVID-19
infection through hand-crafted texture features and complex features extracted by a pre-trained ResNet101 network. The 7-layered Deep
Convolutional Neural Network used for classification is optimized using a revolutionary rapid navigation optimization technique. The
proposed optimization improves the Moth-Flame Optimizer by integrating the concept of Mayfly velocity to update the position of the
Moth fly in the exploration space. When tested on an open access dataset, COVID - CT containing 349 COVID-19 positive CT images
and 397 COVID-19 negative CT images, the accuracy, sensitivity, and specificity of the proposed rapid navigation optimization-based
deep CNN classifier were 97.260%, 94.301%, and 99%, respectively. The proposed model was also tested on an augmented COVID
- CT dataset and a larger dataset, COVIDx-CT-3A. The proposed model has exhibited an accuracy of 99.61% and 89.35% on the
augmented COVID - CT dataset and COVIDx-CT-3A, respectively. Our proposed method outperformed the other published cutting-edge
research works that have tested on the small COVID - CT dataset.

Keywords: COVID-19, chest CT, Haralick texture features, Local Directional Pattern, Gray level co-occurrence matrix, DNN,
Moth-Flame Optimization

1. INTRODUCTION

In December 2019 the world was hit by a major
pandemic caused by a novel coronavirus called ‘Severe
Acute Respiratory Syndrome Coronavirus2 (SARS-COV-
2). As COVID-19 is highly infectious, early diagnosis and
subsequent isolation of the infected patient is imperative to
control its rapid spread and decide the future course of treat-
ment. A patient exhibiting typical COVID-19 symptoms like
fatigue, sore throat, shortness of breath, diarrhea, headache,
high fever, and loss of taste is prescribed to undergo
the Reverse Transcription-Polymerase Chain Reaction (RT-
PCR) test for further diagnosis [1]. However, RT-PCR test
is reported to exhibit high false negative rates, particularly
at the early stage of the disease. Further, shortage of
testing kits in a pandemic scenario and a highly controlled
testing environment hampers rapid and accurate diagnosis in
case of infected patients. Chest Computerized Tomography
(Chest CT) has played an important supplementary role in
diagnosis, and follow-up assessment to determine degree
of pulmonary involvement. Chest CT screening offers good

resolution and a 3-D view of the lung. Another advantage
of chest CT scans is the unique relationship between CT
density and lung air content. Thorax of a normal healthy
person consists of a large area of air and a few soft tissues
like trachea and aorta. Air, with a Hounsfield Unit (HU)
of 1000 appears as all black, while the other soft tissues
exhibit patterns as per their HU number. COVID-19 infected
patients exhibit Ground Glass Opacity (GGO), linear opaci-
fication, crazy-paving sign, and pulmonary consolidation [2]
and [3]. Fig. 1 illustrates CT images of a normal lung (with
Superior vena cava, Trachea and Aortic arch) and various
CT imaging characteristics of COVID-19 infection [4].

Abnormalities that manifest in the radiographic images
can be interpreted only by expert radiologists. In the event
of a pandemic and scarcity of trained radiologists, accu-
rate diagnosis and subsequent treatment is a challenge for
healthcare practitioners. Computer Aided Diagnosis (CAD)
can assist the clinical diagnosis process and increase the
rate of early diagnosis with high accuracy [5]. Researchers
have proposed many machine learning - based techniques
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for detection of COVID-19 infection.

In this research, the authors propose to exploit texture
characteristics of chest CT images to develop a classifier
to distinguish between COVID-19 and non-Covid-19 im-
ages. To enhance the classifier performance, ReliefF-based
feature selection algorithm and a novel nature-inspired
optimizer are incorporated in the process of classification.
The major contributions involved in this research are as
follows,

Hybrid feature extraction: As COVID-19 lesions affect
pixel intensity values in CT images, we exploit Haralick
texture features to identify abnormalities. We compute a
joint feature descriptor based on Local Binary Pattern
and Local Directional Pattern codes to integrate texture,
statistical and gradient features. To extract more complex
and subtle features from the computed texture features we
use a pre-trained ResNet101.

ReliefF-based feature selection: The most relevant
features are selected using ReliefF algorithm. ReliefF al-
gorithm considers ‘k’ neighboring ‘hits’ and ‘misses’ to
estimate the feature quality and relevance. The algorithm
effectively eliminates the redundant features and improves
classification accuracy.

Novel Rapid Navigation Optimization-based deep
CNN: Tuning of many parameters in Deep Neural Net-
works (DNNs) is a critical issue. A revolutionary Rapid
Navigation Optimization (RNO) technique is implemented
to enhance the Moth-Flame Optimization (MFO) algorithm.
The velocity concept of Mayfly algorithm is integrated in
MFO to update position of Moth fly in the exploration
space. The Rapid Navigation Optimizer (RNO) is a hybrid
of two nature-inspired optimization algorithms, the Mayfly
Algorithm (MA) and the Moth-Flame Optimizer (MFO).
The proposed optimizer updates weights in the DCNN and
improves classification performance on a small dataset.

The rest of this paper is structured as follows: A
summary of related research work carried out to detect
COVID-19 from chest CT images is presented in Section 2.
Section 3 describes the proposed methodology. Comparative
performance analysis of the proposed RNO is presented in
Section 4. Finally, Section 5 concludes the paper. Addition-
ally, it discusses limitations and future research directions.

Ground Glass Opacity

Normal lung Honeycombing

Figure 1. Radiological patterns on Chest CT scans

2. REeLATED WORK

Researchers have applied Digital Image Processing
(DIP) and Artificial Intelligence (AI) concepts to develop
CAD systems to detect COVID-19 infection using Chest
CT scans [6]. Hossain M. M. et al. [7] proposed an
automatic detection model for COVID-19 diagnosis from
chest Computed Tomography (CT) scans. A feature vector
was constructed through the fusion of features extracted
from two Convolutional Neural Network (CNN) models,
VGG-19 and ResNet-50. Feature optimization methods,
Recursive Feature Elimination (RFE), Principal Component
Analysis (PCA), and Linear Discriminant Analysis (LDA)
were used to identify the most relevant features. The opti-
mized features are finally classified with the Max Voting
Ensemble Classification (MVEC). The fused features of
VGG-19 and ResNet-50, processed with PCA and MVEC,
exhibited highest values of accuracy, specificity, sensitivity,
and precision at 98.51%, 97.58%, 99.49%, and 97.47%,
respectively, after 5-fold cross-validation. Hassan E. et al.
[8] evaluated pre-trained transfer learning models such
as ResNet-50, VGG-19, VGG-16, and Inception V3 for
classifying the input CT images. This study employed
binary cross-entropy metric to compare COVID-19 cases
with normal cases. Overfitting issues were addressed by use
of the Stochastic Gradient Descent and Adam optimizers.
The proposed pre-trained transfer learning models achieved
accuracies of 99.07%, 98.70%, 98.55%, and 96.23%, re-
spectively. Punitha S. et al. [9] proposed an Ant Bee
Colony optimized ANN (ABCNN) to detect COVID-19
from lung CT scans. Nature-inspired optimizers were used
for feature extraction, feature selection and optimization
of the ANN. They achieved an accuracy of 92.37% on
the public database compiled by Yang et al. [10]. Gao,
He and Li [11] proposed a Swin-Unet- based light weight
ANN for semantic segmentation of COVID-19 lesion in
Chest CT scans. On a large public dataset of COVID-19
CT scans, they achieved precision, recall, and Intersection
over Union (IoU) values of 0.780, 0.848 and 0.683, re-
spectively. Model’s accuracy depends on a large annotated
dataset and may mis-predict if there is a slight variation or
similarity in COVID-19 lesions and normal lungs. Tuncer
I. et al. [12] combined swin-based patch division with
textural feature extraction and developed the swin-textural
model for automated diagnosis of COVID-19 on chest CT
images. The swin-textural model had an accuracy of 98.71%
on a data set containing total 4171 CT images from 210
subjects. Li J. et al. [13] proposed a hybrid model to
improve COVID-19 classification accuracy of deep learning
model using CT scans. Their proposed model combined a
semi-supervised domain adaption model and an Extreme
Learning Machine (ELM) classifier. A novel multi kernel
correntropy induced loss function in transfer learning is
introduced. Their model achieved 97.63% accuracy, 95.16%
precision, and recall of 95.32%. Sadi M. S. et al. [14]
proposed COV-CTX, a deep learning — based model to
detect COVID-19 from CT-scan and X-ray images. Their
system comprises three CNN models, VGG16, VGG16-
InceptionV3-ResNet50, and Francois CNN. A large number
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of CT-scan and X-ray images were individually used to train
the models. Finally, the results of the models are combined
and input to a voting ensemble of classifiers. The proposed
system, COV-CTX attains 92.68% Cohens Kappa score for
CT-scan image based COVID-19 detection. Farjana A. et
al. [15] addressed the concern of limited access to large
datasets of CT scan images due to privacy concerns in
their study. They employed transfer-learning pre-trained
models to automatically detect COVID-19 cases from CT
scan images. The proposed methodology utilized VGG19,
RESNet50, and DenseNetl169 architectures. Experimental
findings indicate DenseNet169 performed the best with an
accuracy of 98.5%. Mohbey K. K. et al. [16] presented a DL
technique and evaluated it on a dataset with 5000 images to
identify COVID-19. Their transfer learning model is based
on VGG-19 architecture. It attained an accuracy of 95%
with minimum time penalty. Islam et al. [17] proposed a
novel Convolutional Neural Network (CNN) to extract 100
prominent features from 2482 chest CT scans. The extracted
features were deployed to several machine learning algo-
rithms, viz, Gaussian Naive Bayes (GNB), Support Vector
Machine (SVM), Decision Tree (DT), Logistic Regression
(LR) and Random Forest (RF). In the last stage, a voting
ensemble — based model was implemented for COVID-
19 detection. They achieved highest accuracy of 99.73%.
A limitation of this study is that they implemented only
the existing machine learning algorithms. Ren Q. et al.[18]
proposed a hybrid framework, the Complex Shearlet Shat-
tering Transform — Wide Residual Network (CSST-WR2N)
to extract more granular multiscale discriminative features
from CT images for COVID-19 detection. The model was
trained on total 1599 COVID-19 CT images and 1627
non-COVID-19 CT images. The hybrid model achieved
accuracy of 95.38%. However, the use of fixed Shearlet
transforms may limit its performance. DeepPneumonia, a
pre-trained ResNet-50-based system was developed by Ying
Song et al. [19] to detect COVID-19 and localize the infec-
tion lesions. The hospital image dataset included COVID-19
CT images of 88 patients and CT scans of 101 Community
Acquired Pneumonia (CAP) patients. They achieved 94%
accuracy. The model could predict well on the original
hospital dataset but could not predict external data directly.
Li Caizi et al. [20] developed a self-ensembled co-training
framework, trained by a limited labeled dataset of 33
COVID-19 CT images from hospitals and 70 unlabeled CT
images. Values of performance metrics achieved by their
semi-supervised methodology are: AUC 89.57%, sensitivity
79.38%, and specificity 99.75%. There is a possibility of
unlabeled data being wrongly predicted due to lack of prior
knowledge in the semi-supervised method. Balaha H. M.
et al. [21] designed a hybrid learning and optimization
model, the CovH2SD for detecting COVID-19 from the
Chest Computed Tomography (CT). CovH2SD employed
deep learning and pre-trained models to extract the features
from the CT scans. The use of Harris Hawks Optimiza-
tion (HHO) algorithm enhanced its diagnostic capabilities.
CovH2SD achieved top accuracy of 99.33% on a large
dataset comprising of total 15,535 CT images. Kaur T.

et al. [22] proposed a model based on the deep features
and Parameter Free BAT (PF-BAT) - optimized Fuzzy K-
nearest neighbor (PF-FKNN) to detect COVID-19. The
fully connected layer of transfer learned MobileNetv2 was
employed to extract features. The features were classified
by a FKNN classifier The proposed model achieved a
validation accuracy of 99.38% on a large dataset comprising
of 1252 CT scans of COVID-19 positive patients and 1230
COVID-19 negative images. Sen S. et al. [23] proposed
a bi-stage feature selection approach comprising two filter
methods, Mutual Information (MI) and ReliefF in the first
stage and a bio-inspired optimizer, the Dragon fly optimizer
in the second stage. The model exhibited a higher prediction
rate of 98.39% on a large size dataset (1252 images of
COVID-19 and 1230 images of non-infected patients) and
accuracy of 90.00% on the smaller public dataset [10]. They
attribute the misclassified cases to poor quality of certain
images and lack of ample historical COVID-19 data. Wang
Bo et al. [24] proposed a two-stage deep neural network
- based model to classify between COVID - 19 positive
and negative scans and highlight the lesion regions as well.
The model used several segmentation models such as Fully
Convolutional Networks (FCN), U-Net, V-Net and 3D U-
Net++. In the classification stage, classification models
such as ResNet-50, InceptionNet, Dual Path Network-92
(DPN-92) and Attention ResNet-50 were evaluated. The
hospital acquired data set comprised 1136 training cases
from 5 hospitals with 723 COVID-19 positive cases and 413
cases of variety of pulmonary diseases. The model achieved
sensitivity of 0.974 and 0.922 specificity. However, the
model relies heavily on a large annotated dataset. Yasar and
Ceylan [25] presented a comparative study of techniques
used to detect COVID-19. Grey Level Co-occurrence Ma-
trix (GLCM) and Local Binary Pattern (LBP) methods were
used to extract texture features which were subsequently fed
to a 23-layered CNN classifier. On a dataset comprising
386 chest CT images of COVID-19 patients, the model
obtained 95% accuracy, 94% sensitivity and 99% specificity
with 70% training data. Mishra, Das et al. [26] proposed a
decision fusion-based approach to identify COVID-19 from
chest CT images. The model evaluated the fusion of several
Deep CNN models, viz. VGG16, Inception V3, ResNet50,
DenseNet121 and DenseNet201 on a publicly available
dataset [10]. The fusion model achieved higher accuracy
(88.34%) than the individual models. Shaban W. M. et
al. [27] computed a set of features from chest CT scans
using Grey Level Co-occurrence Matrix (GLCM). Selected
relevant features were inputted to an Enhanced K-Nearest
Neighbor (EKNN) classifier to classify between COVID-
19 and non-COVID images. They achieved an accuracy of
96% and 71% sensitivity with minimum time penalty. Lit-
erature survey indicates that Deep Neural Networks (DNN)
have been extensively used for diagnosis and detection
of COVID-19 from chest CT images. After thoroughly
studying the published literature, we observe a few research
gaps. Though several studies have achieved substantial clas-
sification accuracies, their performance depends heavily on
a large annotated dataset and suffers from mis-prediction on
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smaller datasets. A few other research works could predict
well on a small hospital dataset but could not perform as
well on external data. Researchers have evaluated existing
Deep CNN models to identify COVID-19 from chest CT
images. However, automatic feature extraction by DNNs
lack interpretability, which is critical in health care diag-
nostics. Requirement of a very large annotated dataset, high
computational resources in terms of sophisticated Graphics
Processing Units (GPUs), memory, training time etc. are
primary concerns in using DNNs. Published literature on
image texture analysis show that abnormal lung anatomy
(caused due to various lung ailments) exhibit visual patterns
that are distinct from those of normal and healthy lungs.
Published studies suggest that shape and texture features
characterize the most prevalent patterns related to lung
abnormalities. Empirical studies indicate better performance
of second and higher order statistical approaches as com-
pared to the first order statistical features [28]. As texture
parameters indicate variations in pixel intensity values of
chest CT images, we propose a hybrid texture feature ex-
traction approach followed by an efficient feature reduction
technique to select the most relevant features to distinguish
between COVID-19 and non-COVID-19 images. A light-
weight deep CNN optimized by a modified bio-inspired
optimizer is used in the final classification stage.

3. METHODOLOGY

The proposed model consists of four major phases viz.,
image acquisition, image preprocessing, feature extraction,
feature selection and classification. The input images ob-
tained from an open-source database of chest CT scans,
COVID-CT are resized to a uniform size and filtered to
eliminate noise. Region-based segmentation is employed to
segment lungs from the chest CT images. Haralick features,
Local Binary Pattern (LBP) codes, and Local Directional
Pattern (LDP) codes are computed to obtain texture and
intensity features. A pre-trained ResNet-101 network is
employed in the next stage to extract more complex and
subtle features. ReliefF feature selection algorithm selects
the most relevant features thereby eliminating redundant
features and reducing dimensionality. The most relevant
features are classified into COVID-19 and non-COVID-19
by a 7-layered Deep Convolutional Network. The Deep
Convolutional Network is optimized by a novel Rapid Navi-
gation Optimizer, that is a hybrid of Moth-Flame Optimizer
(MFO) and Mayfly Algorithm (MA). The stages of the
proposed model are discussed in detail in the sub-sections
3-A to 3-F. The proposed methodology is illustrated in Fig.
2.

A. Image Acquisition:Dataset Details

Chest CT scans for training and testing the proposed
model were collected from a public dataset, COVID-CT,
created by Yang, Zhao, et al. [10]. This dataset contains 349
CT images of COVID-19 belonging to 216 patients and 397
CT images that are negative for COVID-19 and are treated
as non-COVID-19. Yang, Zhao, et al. [10] compiled the set
of non-COVID-19 images from four open — access datasets,

the MedPix database, the LUNA dataset, the Radiopaedia
website and the PubMed Central (PMC) archive. All images
are in PNG format and of variable sizes. The dataset is
available on https://github.com/UCSD-AI4H/COVID-CT.

A second larger public dataset, the COVIDx-CT-3A
was utilized to test the effectiveness of the proposed
Rapid Navigation Optimizer algorithm. COVIDx-CT-3A
is an open access benchmark dataset shared by Hayden
Gunraj [29]. The dataset is created by compiling several
open datasets. It comprises 425,024 CT slices from 5,312
patients. It contains 310,593 COVID-19 CT images and
71,488 CT images of normal people. The open access
dataset was last updated in June 2022 and is available on
https://kaggle.com/datasets/hgunraj/covidxct.

B. Image Pre-processing

The steps involved in image preprocessing are as fol-
lows:

e Image resizing: As images obtained from the public
dataset are of variable sizes, all images are resized to
256x256 pixels.

o Image enhancement: Unwanted noise in images is
eliminated by use of Gaussian filters.

e ROI extraction: Region-based segmentation that ex-
ploits similarity of neighborhood pixels is used to
extract the lung region from the chest CT image.

C. Feature Extraction

As texture parameters indicate variations in pixel inten-
sity values of chest CT images, texture features of chest
CT scans can be effectively exploited to detect COVID-19
lesions. The proposed model employs the following hybrid
feature extraction techniques, (i) GLCM-based Haralick
texture features (ii) Local Binary Pattern (LBP) - based
features (iii) Local Directional Pattern (LDP) — based tex-
ture features (iv) Directional Local Binary Pattern ((DLBP)
(v) Fusion of LDP and LBP. The features obtained are
converted into virtual RGB format images. The virtual RGB
format images of computed features are input to a pre-
trained ResNetlOl neural network for further extraction
of features. The bi-stage feature extraction process is as
follows:

1) Stage I: Texture feature computation

1) Step 1: Computation of GLCM-based Haralick tex-
ture features.
Grey Level Co-occurrence Matrix (GLCM), a
second-order statistical approach specifies the rela-
tive frequencies P(i, j) with which two neighboring
pixels with grey level intensity (i, j) occur at a
constant vector distance (d, 6) from each other in the
image. Maximum texture information is contained
in a GLCM and hence it is the basis for computing
the fourteen Haralick features that relate to textural
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Figure 2. Proposed methodology

characteristics of an image [30]. As the Haralick fea-
tures are highly correlated, we compute ten Haralick
features. ANOVA and Chi-squared feature analysis
tests on the computed features indicate that contrast,
entropy, sum entropy and correlation are the highest
ranked features. Mathematical equations for these
four Haralick features are listed in Table I. Contrast,
entropy, sum entropy and correlation values are
mapped to 3 color planes to create a virtual RGB
format image.

Step 2: Computation of a joint feature descriptor
comprising of (i) Local Binary Pattern (LBP), (ii)
Local Directional Pattern (LDP) codes and (iii) Di-

TABLE 1. Haralick Features

Feature | Formula
Contrast | fo = S XV i = ji* % pli, j)
Correlation ‘

T Ty

Sum Entropy ‘

fs = = 220 praylog(p(i))

|
f3 — i 25DPG)—patty ‘
|
|

Entropy | fo = —X; X; p(, plog(pG, j))

rectional LBP (DLBP)
a) Local Binary Pattern (LBP):

The Local Binary Pattern (LBP) operator is

a function of the change of intensity around

the pixel to encode the microlevel information

of spots, edges, and other local features in
the image. The intensity of the center pixel

of a 3x3 window in the image is used as a

threshold to compare against the neighboring

pixels [31]. The LBP code is computed in

steps (i), (i1) and (iii).

i) The LBP code, LBPy(x,y) is computed
using equation 1 on an image of size RxC
for each pixel p(x,y), where x and y are
in the range, 0 < x<Rand 0<y<C. g;
and g, are the gray levels of pixel p and
its i"" neighbor respectively.

N-1

LBPy(x,y) = ) S(gi-g)x2 (1)
i=0

ii) The binary function S(x,y) is computed
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b)

using equation 2.

S(x,y) ={1},ifx > 0;S(x,y) = {0}, otherwise

@)
iii) Binary codes obtained in step (ii) are
converted into decimal.

Local Directional Pattern (LDP)

Local Directional features are considered by

computing the edge response values in dif-

ferent directions. As the LDP descriptor con-
siders the edge response values in different
directions instead of only pixel intensities, it
is more robust against different variations like
non-monotonic changes in illumination and
random noise [31]. The LDP code is computed

in steps (i), (ii), (iii), (iv), (v) and (vi).

i) Eight directional responses of pixels are
computed using the Kirsch compass edge
detector in eight orientations (M;...My)
centered on its own position. The 8
directional Kirsch masks, East, North-
East, North, North-West, West, South-
West, South and South-East, are repre-
sented by equations 3 to 10, respectively.
For each direction i, the i directional
response m; of every pixel (x,y) of the
image is computed using equation 11 by
applying the corresponding mask M;.

3 -3 5
[—3 0 5] 3)
3 -3 5

3 5 5

3 0 5 4)
3 -3 -3

5 5 5

3 0 -3 )
3 -3 -3

5 5 -3

5 0 -3 (©6)
-3 -3 -3

5 -3 -3

[5 0 —3] )
5 -3 -3

3 -3 -3
[5 0 —3] 8)
5 5 -3

3 -3 -3
[—3 0 —3] )
5 5 5

W W W

-3 3
0 5 ] (10)
5

-

1
mi:Z Mik+1,1+ )X I(x+k,y+1)

k=—11=—1
(1)

i) The eight directional responses (my...m7)
obtained in step (i) are sorted in order of
their values.

iii) Generation of the LDP code is based
on the k most significant directional re-
sponses. The corresponding bits repre-
senting most significant directional re-
sponses are set to binary 1 and remaining
8-k bits to 0 for k = 3. The value,
k = 3 has been widely used in published
literature

iv) The LDP code, LDP,(my,...,m7), of
the pixel (x,y) with directional responses

(mg. ..... m7) and my, the k" most signifi-
cant response is computed using equation
12.

7
LDP, ,(my, ...,m7) = Z s(my, ...my) X 2

i=0

(12)

v) The binary function S (x) is computed by
equation 13.

S(x,y) ={1},ifx > 0;S (x,y) = {0}, otherwise

(13)
vi) Binary LDP codes obtained in step (v) are
converted into decimal.

¢) Directional Local Binary Pattern (DLBP)

The third component of the joint feature de-
scriptor, the Directional Local Binary Pattern
(DLBP) code is a combination of LDP and

LBP. DLBP eliminates the dependency of

LDP code on the selection of value of number

of significant bits, k. It is computed in three

steps (i), (ii) and (iii) as follows:

i) Gradient directional responses, my, ..., 17
are computed by applying the Kirsch
masks represented by equations 3 to 10
and using equation 11.

ii) Binary DLBP code for each pixel (x,y)
is generated by comparing the value of
the center pixel, v(x,y), to the response
values, my, ..., m;7 obtained in step (i). The
DLBP code is computed as shown in
equation 14.

7
DLBP, (mq, ..., m7) = Z S (mi—v(x, y))x2'
i=0
(14)
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iii) The binary DLBP codes obtained in step
(i1) are converted into decimal.

iv) A joint feature descriptor is generated
by a fusion of decimal codes of LBP,
LDP and DLBP and converted into virtual
RGB image format.

2) Stage 2: ResNet10I-based Feature Extraction

As the public dataset used is small, a pre-trained
ResNet101 is employed. ResNet101, a variant of the base-
line residual network has total 347 layers, corresponding
to 101 fully connected layers on the path from the input
layer to the output layer. It has been trained on a subset
of the ImageNet database, and can classify images into
1000 object categories [32]. To extract more complex and
subtle features, virtual RGB format images of the com-
puted Haralick features (Contrast, Entropy, Sum Entropy
and Correlation) and the joint feature descriptor (LBP,
LDP and DLBP) are input to a pre-trained ResNet 101
neural network. The images are resized to 224x224x3 to
fit requirements of ResNet 101 and ‘activations’ with Mini
Batch size of 32 is used to extract feature representations
from ‘fc1000’ layer of ResNet101. Total number of features
extracted by the ResNet101 in the proposed model are of
the dimensions 544x5001.

D. ReliefF — based Feature Selection

As the feature set generated by ResNetl01 is of high
dimension (544x5001features), a feature selection algorithm
is applied to eliminate redundant and irrelevant features.
The feature selection algorithm also serves to reduce di-
mensionality and improve classification performance. The
Relief feature selection algorithm calculates a proxy statis-
tic, referred to as feature weights Wy for each feature f.
The feature weight is used to estimate the feature relevance.
The ReliefF feature selection algorithm is the sixth and
the best-known variant of the baseline Relief algorithm.
It is computationally efficient and sensitive to complex
patterns of associations. ReliefF relies on a user parameter
k indicating number of neighbors. k specifies the use of k
nearest hits and k nearest misses in the scoring update for
each target instance (rather than a single hit and miss) [33].

Considering k number of neighbors has increased weight
estimate reliability, particularly in noisy problems. Based
on preliminary empirical testing a value of 10 has been
widely adopted as the default setting for k& number of
neighbors. In the proposed study, the feature vector of
dimensions 544 x5001 generated by ResNet 101 are input
to the ReliefF feature selection algorithm. Value of k, the
number of neighbors is 10. ReliefF returns 1000 highest
ranked features. Steps involved in the ReliefF algorithm are
as follows:

1) Step 1: Initialization of feature weights
Initialize all feature weights, Wy to zero.

2) Step 2: Determination of hits and misses of an
instance x

Randomly select an instance x and find k nearest
neighbors that belong to the same class, referred to
as nearest hits H;(x) and different classes, referred
to as nearest misses M ;(x).

3) Step 3: Updation of the quality estimator Wy
Update the value of the quality estimator, W for all
attributes f by considering their values for x, H;(x)
and M;(x) as follows:

a) If the values for x and H;(x) are different
for attribute f (the attribute f separates the
two instances of same class) then decrease the
value of Wry.

b) If the values of x and M;(x) are different
for attribute f (the attribute f separates the
two instances of different class) then increase
the value of W,. Weight updating formula is
specified in equation 15.

Tt dif fO6m;(0)
Wij"l — Wi- + Z 1-p(class(x) > 11y
f f

c#class(x)

m
15)
where diff() is the distance between two sam-
ples of the feature f when finding nearest
neighbors and p(x) is the probability of a
class.
¢) Euclidian distance is used to compute the
inter-class and intra-class distances of samples
and is specified in equation 16.

N
Z(xi - yi)?
p)

4) Step 4: Determining the relevance of features
Sort the feature indices in ascending order of their
weights (relevance).

5) Step 5:Selection of most relevant features
Select the 1000 highest ranked features.

D(x,y) = (16)

E. Optimized Deep Convolutional Neural Network (OD-

CNN)

The final stage of the proposed model involves classifi-
cation of COVID-19 and non-COVID images based on the
selected features. The highest ranked 1000 features selected
through the ReliefF feature selection algorithm are input
to an Optimized Deep Convolutional Neural Network (OD-
CNN). The Optimized Deep Convolutional Neural Network
(ODCNN) is trained for 30 epochs, and a learning rate of
0.001. Architecture of the proposed DCNN is illustrated in
Fig. 4. The ODCNN comprises of 7 layers, as follows:

e Layer 1: 2-D input layer of size 1000 x 1.

e Layer 2: The 2-D Convolution layer comprising of 5
filter kernels of size 1x1.

e Layer 3: The Rectified Linear Unit (ReLU) is an
activation layer and applies non-linearity to the con-
volution output.

https://journal.uob.edu.bh


https://journal.uob.edu.bh

%
AR
>
= -
ieﬂJ-‘J
& >

o

Baas
616 1”’%%; Priya Sawant, et al.: RNO-based DCNN for Covid-19 Detection using CT Scans

e Layer 4: 2-D max-pooling layer extracts the maxi-
mum value in a 1x1neighborhood with a stride equal
to 5. The flattening layer following the 2-D max-
pooling operation flattens its output into a single array
of dimension 1000.

e Layer 5: Fully Connected Layer (FC) comprises 2
output neurons. Weights extracted from layer 5 are
fine - tuned using various optimizers such as, Adam
optimizer (inbuilt), Moth-flame optimizer (MFO),
Mayfly optimizer and the proposed Rapid Naviga-
tion Optimizer (RNO). Performance analysis of these
optimizers is presented in Section 4-C.

e Layer 6: Softmax Layer outputs a vector with proba-
bilities of each possible outcome. (COVID-19/ Non-
COVID-19). It is mathematically represented by

equation 17.
exp(yi)

2000

where y is the input vector to the softmax function,
S. It consists of n elements for n classes. y; is
the i .eler.nent of the input vector, y. Z?zl(y,-) is a
normalization term.

SO = (17)

e Layer 7: Final classification layer infers the output
class, class 1 for COVID-19 and class O for non-
COVID-19.

Details of input features, layer wise activation, filters
and learnable parameters are listed in Table II. The
7-layered ODCNN has total 2K learnable parameters.

The ODCNN performance is evaluated for the following
optimizers: (1) Adam optimizer (inbuilt) (2) Moth-flame
optimizer (MFO) (3) Mayfly optimizer (4) The proposed
Rapid Navigation Optimizer (RNO).

F. Proposed Rapid Navigation Optimization Algorithm

Fine-tuning weights and bias of the proposed ODCNN
to maximize classification accuracy and to prevent over-
fitting is an optimization problem. Nature-inspired opti-
mization algorithms have been successfully used to solve
many engineering problems. A nature-inspired optimization
approach, the Rapid Navigation Optimization (RNO) algo-
rithm is proposed to tune the weights of the DCNN. It inte-
grates the attributes of the well-known Mayfly optimization
technique and the Moth-Flame Optimizer (MFO) algorithm.
The nature — inspired optimization algorithms considered
for the proposed Rapid Navigation Optimization (RNO)
algorithm are discussed in brief in Sec. F.1 and Sec. F.2.
The mathematical model of the proposed Rapid Navigation
Optimization (RNO) algorithm is explained in Sec. F.3.
Algorithm of the proposed Rapid Navigation Optimization
(RNO) is shown in Sec. F4.

1) Overview of Mayfly Algorithm (MA)
The Mayfly algorithm is an improved modification
of the Particle Swarm Optimization (PSO) algorithm.

2)

It offers a powerful hybrid algorithm structure by
combining the major benefits of Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA).
The mayflies exhibit a typical social behavior, partic-
ularly during their mating/breeding process. Mayfly
algorithm draws inspiration from their mating pro-
cess. The male mayflies congregate in large numbers
a little above water. They perform a nuptial dance
to attract the female mayflies. As male mayflies
always gather in swarms, the position of each male
mayfly is influenced by its own personal experiences
and the experiences of the neighboring male flies
[34]. A female mayfly individually flies to a male
fly to breed. The crossover operator represents the
mating process. Design of crossover operator ensures
that the best male breeds with best female mayfly.
Initially two sets of mayflies, the male and female
population are randomly generated. The potential so-
lution is obtained by randomly placing each mayfly
in the problem space. Each mayfly is randomly
placed in the problem space as a potential solution.
This is represented by a d — dimensional vector,
x = (x1,..., xg). Its performance evaluation is done
by a predefined objective function, f(x). Velocity
of a Mayfly is defined as change of its position,
v = (v, V2, ...,vg). The dynamic interaction of both
pbest and gbest at time ¢ determines the direction
in which a mayfly flies. The global best (gbest)
solution is the best position attained by any mayfly
in the swarm so far and depends on pbest. Change
in position of a male mayfly i at time step ¢ is
formulated by adding a velocity component vi*! to
the current position, xlf, as shown in equation 18.

1+1
i

= xl+ Vit (18)

X i
Male mayflies are assumed to move constantly. They
cannot develop higher speeds as they are always
a few meters above water performing the nuptial
dance. Accordingly, the velocity of male mayfly, vZTl
is computed as specified in equation 19.
il = v§j+a1e’ﬂrlz’(pbestij—x;j)+aze’ﬁ’§(gbest,-j—xf. )
(19)
Vi ;- velocity of mayfly i in the dimension j = 1,...,n at
time step ¢; x,[‘j - position of mayfly i in the dimension
j = L...n at time step #; a; and a, — Positive
attraction co-efficient to scale the contribution of the
cognitive and social component; 5- Fixed visibility
co-efficient; r, — Cartesian distance between x; and
(pbest);; r, — Cartesian distance between x; and
gbest. Each mayfly adjusts its path of flight towards
its personal best position (pbest) so far and the best
position attained by any mayfly of the swarm so far
(gbest), thus ensuring optimal solution.
Overview of the Moth-Flame Optimizer (MFO)
The transverse orientation navigation mechanism of
moths is the main source of motivation to develop

14
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Figure 3. Optimized Deep Convolutional Neural Network

TABLE II. ODCNN layer and activation details

| Layer No. | Layer Name \

\ Activations

1 imageinput Image Input 1000(S)x1(S)x1(C)x1(B) -
1000x1 images with ’zerocenter’
normalization
2 conyv 2-D Convolution 1000(S)x1(S)x5(C)x1(B) Weights 1 x 1 x1

5 1x1x1 convolutions with stride [1
1] and padding [0 0 0 0]

Bias 1 x1x5

3 relu 1000(S)x1(S)x5(C)x1(B) -
ReLU
4 maxpool 2-D Max Pooling 200(S)x1(S)x5(C)x1(B) -

1x1 convolutions with stride [5 5]
and padding [0 0 0 0]

5 fc Fully Connected 1(S)x1(S)x2(C)x1(B) Weights 2x1000
2 fully connected Bias 2x1

6 softmax 1(S)x1(S)x2(C)x1(B) -
softmax

7 classoutput Classification Output 1(S)x1(S)x2(C)x1(B) -
crossentropyex with classes 1’ and
3 2’

the Moth-Flame Optimizer (MFO) algorithm. Hence,
the MFO algorithm is classified as a nature-inspired
algorithm. The moths use this mechanism to fly
in the night using the moon light. Moths fly by
maintaining a fixed angle with the moon. Fig. 5 illus-
trates the concept of transverse orientation. However,
the transverse orientation is effective only when
moving in a straight line when the light source
is very far. When a moth sees a light at a close

distance, it tries to fly at a similar angle with the
light and ends up flying in a vicious helical path.
It eventually converges towards the artificial source
of light. Fig. 5 depicts the spiral flying path of
moths around close light sources. Seyedali Mirjalili
developed a mathematical model of the spiral flying
path of moths around artificial lights and proposed
the Moth-Flame Optimizer (MFO) [35]. Moths are
the candidate solutions and the problem’s variables
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Figure 5. Spiral motion of moths

are the position of moths in space. The key concepts
of MFO algorithm are as follows:

a)

b)

MFO is a population-based algorithm. The
matrix M, specified in equation 20 represents
the initial position of each moth in the moths’
population.

[ml,l mlyd)
M = e Moy (20)
mn,l m,,,d

where n is the population size (number of
moths); d represents the number of vari-
ables/dimensions.

Fitness value of each moth is computed after
obtaining positions of all moths in the search
space. The fitness value of each moth is calcu-
lated using a fitness (objective) function, f(obj)
and the result is saved in the fitness matrix
OM, represented by equation 21.

OM = [om oms...om,]" (1)

)

d)

€)

The variable, ‘flame’ represents the moth’s
best position (best solution) that has been
found so far [35]. The ‘flame’ positions and
their fitness values are stored in the matrices
F and OF as indicated by equations 22 and 23

respectively.
fin o fia
F = [ fz,d) (22)
Jar o Jua
OF = [ofiofs...0fa]" (23)

Moths explore the search space, while flames
are the best positions of moths, obtained so far.
The matrix F in equation 22 always represents
the n recent best solutions obtained so far.
The transverse orientation is mathematically
modelled by a logarithmic spiral. A moth
represents the initial and a flame indicates
the final point of the spiral. The logarithmic
spiral, space around the flame and positions at
different values of ¢ is illustrated in Fig. 7. The
spiral flying path of moths is mathematically
defined in equations 24, 25 and 26.

M;=SM;F) (24)

M; is the updated position of the i”* moth;
S describes a logarithmic spiral curve; F;

represents the j” flame

S(M;,F;) = D; x " x cos(2nt) + Fj (25)

b is a constant that defines the shape of the
logarithmic spiral;

D; =|F; - M| (26)

D; is the distance between the i”* moth and
the j” flame. Equation 25 clearly indicates
that the next position of a moth is defined
with respect to a flame. The spiral motion
ensures that a moth flies around the flame and
guarantees exploration and exploitation of the
search space. To further emphasize exploita-
tion, it is assumed that ¢ is a random number
between [a,1], where a decreases from -1 to -2
as the number of iteration increases. At each
iteration, and after updating the list of flames,
the flames are sorted based on their fitness
values. The moths then update their positions
with respect to the best flames. Accordingly,
the first moth always updates its position with
respect to the best flame and the last moth
updates its position with respect to the worst
flames. As the moths move around different
flames there is higher exploration of the search
space and lower probability of local optima
stagnation.

To improvise exploration of the optimal solu-
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Figure 6. Spiral path of Moths

tion and enhance the convergence rate of the
algorithm in the later stages, there is a need to
adaptively reduce the number of flames [36].
The number of flames is reduced adaptively
over the course of iterations and is specified
by equation 27.

1
) 27

N represents the maximum number of flames;
[ is the current number of iterations and T
indicates the maximum number of iterations.
The search performance of the MFO relies
on exploration (algorithm searches the whole
space) and exploitation (local search in a small
search area).

N —
Nyigme = round(N — I X

3) Mathematical Model of the Proposed Rapid Naviga-

tion Optimizer (RNO) Algorithm
The original Mayfly Algorithm (MA) [34] and MFO
algorithm [35] are used as the baseline for deriving
the equations of the proposed Rapid Navigation Op-
timizer (RNO) Algorithm. To avoid local optimum
stagnation and maintain balance between exploration
and exploitation, concept of random radius search
is introduced. The concept of velocity associated
with the Mayfly Algorithm (MA) is integrated into
the position renovation stage of the Moth fly to
improvise the effective region search and maximize
the speed of convergence. The four significant stages
involved in the proposed RNO algorithm are as
follows:
a) Stage 1: Initialization
Population position of moths represent the
initial weights. Population position of moths
in the search space are initialized as specified

in equation 28.
M = R(n,d) x (ub —1b) + b (28)

where ub and [b are the upper and lower
bounds of the search space, respectively; n is
the population size, representing the number
of moths; d represents the number of vari-
ables/dimensions. In the proposed algorithm,
the number of variables are equal to weights in
layer 5 of the fully-connected layer of the Op-
timized Deep Convolutional Neural Network

(ODCNN); R is the random number genera-

tion function, that generates random numbers

with a uniform distribution in the range (0,1)

[35].

b) Stage 2: Exploration stage

i) Initial position corresponding to each
moth is stored in matrix M, specified in
equation 20.

ii) The fitness value of each moth is calcu-
lated using a fitness (objective) function,
f(obj). Result of fitness function is saved
in the fitness matrix OM, represented by
equation 21. The fitness function, f(obj) in
the proposed algorithm specifically calcu-
lates the accuracy of the ODCNN classi-
fier after updating the weights in layer 5.
Accuracy is computed using equation 33.
The fitness value is the accuracy returned
by the objective function, f(obj) and must
be maximized to improve performance of
the ODCNN.

iii) The ‘flame’ positions and their fitness
values are stored in the matrices F and
OF as indicated by equations 22 and 23
respectively.

c) Stage 3: Position renovation stage

This stage models the spiral motion of the

moths in real life [35]. The spiral flying path

of moths is mathematically described in equa-
tions 24, 25 and 26. The number of flames
is decreased adaptively over the course of

iterations and is specified by equation 27.

d) Stage 4: Effective region determination

i) In the proposed Rapid Navigation Opti-
mizer (RNO), velocity and search space
are considered significant for updating the
effective position of the moths. Equation
29 describes selection of search space and
updating of the foraging velocity around
the flame of the moth fly.

le — S(Ml,F )+vt+l +€(T Xl) (29)

e — Moth fly exploring the search space; T
- Search Radius; S (M;, F';) - spiral motion
of the Moth fly; fftl — velocity of male
mayfly.
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ii)

iii)

To improvise the effective region search
during position renovation of the Moth
fly, concept of velocity associated with
the male mayfly is applied to the stan-
dard MFO algorithm. The spiral motion
of the moth fly ensures that a moth
flies around the flame and guarantees ex-
ploration and exploitation of the search
space. In the Mayfly Algorithm, velocity
of male mayfly, vz’l is computed as spec-
ified in equation 19. Velocity of the male
mayfly and hence its position is a function
of the personal best position (pbest) a
mayfly has ever visited and the best posi-
tion attained by any mayfly of the swarm
so far (gbest). As this concept ensures an
optimal solution in the Mayfly Algorithm,
it is incorporated in the spiral motion of
the MFO to enhance optimization results.
Accordingly, equation 19 of the mayfly is
substituted in equation 29 as shown in 30.

Xmﬁl

1 = e(T’ Xf) + ij + a1e_/3r12’(pbest,»j - xfj)

+are P (gbest;; — xﬁj)

(30)

X" represents the updated solution of the
Mayflies.
The final position update rule for the
proposed Rapid Navigation Optimization
(RNO) algorithm follows the characteris-
tics of the mothfly and mayfly. Hybridiz-
ing characteristics of both flies with equal
significance, we obtain a better solution in
terms of exploration, exploitation and the
best solutions obtained during iterations.
The final position update rule for the
proposed Rapid Navigation Optimization
(RNO) is modelled in equations 31 and
32.

Xt+l —

[S(M;, Fj) + X791 (€2))]

1
2

mized using the vanilla Mayfly Algorithm
(MA).
4)  Algorithm of Proposed Rapid Navigation Optimizer
(RNO)
The algorithm for the proposed Rapid Navigation
Optimizer is depicted in Table III.

4. PERFORMANCE EVALUATION OF THE PROPOSED OPTIMIZED
CoNVOLUTIONAL NEURAL NETWORK

The performance of our proposed ODCNN model and
other comparative methods are described in this section.
For the performance evaluation and comparative analy-
sis, the metrics computed were accuracy, precision, sen-
sitivity/recall, specificity, F1-Score and Receiver Operat-
ing Characteristics (ROC). The performance metrics were
computed with respect to training percentage and K-fold
validation. The proposed ODCNN model was evaluated on
3 types of datasets:

1) The COVID-CT dataset [10]
2) Augmented COVID-CT dataset
3) COVIDx-CT-3A dataset [29]

A. Experimental Setup and Parameter Settings

All training and test simulations were implemented
using MATLAB software on a 1.6 GHz Intel Core i5-8265U
Quad-Core laptop with 8GB DDR4, 16GB Optane, 1TB
HDD and Windows 10 operating system. The size of the
input layer of the ODCNN was set to 1000, that is the size
of the features selected by ReliefF algorithm. The output
layer comprises 2 nodes representing two classes, COVID-
19 and non-COVID-19.

The ODCNN performance was evaluated for the follow-
ing optimizers: (1) Adam optimizer (inbuilt) (2) Moth-flame
optimizer (MFO) (3) Mayfly optimizer (4) The proposed
Rapid Navigation Optimizer (RNO). Values of number of
search agents, the moths (n) and maximum number of
iterations (7},,,) for the proposed RNO algorithm were set
empirically. The optimal values of both n and T,,, that
achieved maximum classification accuracy was 5.

X1 = 1[D; x € x cos(2nt) + F; + e(r,X")+B. Performance Metrics

2
X' +e(r,X") +vi + ale‘ﬁrﬂ(pbestij - xfj)+

a,e P’ (gbest; =X j)]

(32)
Equation 32 provides a better solution
during the rapid search in the exploration
space. The classification accuracy of the
RNO-based ODCNN for the K-fold value
of 10 is 97.260%. There is a performance
improvement of 4.19% over the accuracy
of the standard MFO — based ODCNN.
A performance improvement of 6.71% is
indicated in the classification accuracy of
the RNO-based ODCNN optimized over
the accuracy of the ODCNN when opti-

The performance measures considered for analyzing the
proposed RNO algorithm and the other existing methods
are described below.

1) Accuracy (Acc)

The number of accurate predictions of positive and
negative cases from the disease patient’s test samples to
the ratio of the total number of provided test samples.
Classification accuracy is computed as specified in 33.

Accurate predictions of positive and negative cases(TP + TN)

Total test samples(TP + TN + FP + FN) 33)

https://journal.uob.edu.bh
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TABLE III. Rapid Navigation Optimizer Algorithm
| Rapid Navigation Optimizer
INPUT: Weights from layer 5 of the 7-layered ODCNN
OUTPUT: Best_Solution (Optimal weights)
PARAMETERS:
n: Number of Moths
T: Current iteration; T,,,, : Maximum number of iterations
d: Number of variables (dimensions) = Number of weights in Layer 5
N: Maximum number of flames
BEGIN
Set the initial values of lower bound (Ib), upper bound (ub) of the search space as per values of weights obtained from
layer 5

Define objective function fobj: Compute Accuracy of ODCNN after updating weight using equation 33
Randomly initialize moth positions (M) as specified in equation 28
While T | Ty
Compute number of flames (N ) using equation 27
Check and correct the moth positions with respect to lower bound (Ib), upper bound (ub) of the search space
Evaluate fitness of each moth using f,,; : OM = fop;(M)
If T==1:
[Fitness sorted , I] = sort (Fitness of 1st population of moths)
sorted population = Moth positions, M as per I
Flames (F) = sorted population
Compute flame (F) fitness and sort flames as per their fitness values: OF = sort(F)
else:
F = sort(Mr-1, Mr); T is current iteration, T-1 is the previous iteration
OF = sort(OMr_y,OM7)

end

end

for i=1:n
for j=1:d

Update ‘t’ in equation 25 between [a,1] where a decreases from -1 to -2 as the number of iterations increases
Compute Di using equation 26 with respect to the corresponding moth
Update moth position in accordance to equation 32
end
end
Best flame pos = Best Solution (weights)
END

2) Recall / sensitivity (Sen)

The accurate prediction of positive cases from the dis- Accurate prediction of negative cases(TN)
eased patient’s test samples to the ratio of accurate predic-
tion of positive cases and inaccurate prediction of negative
cases from the test samples. Sensitivity, also termed Recall
is calculated using equation 34. 4) Precision (Pre)

The accurate prediction of positive cases from the dis-
eased patient’s test samples to the ratio of total number
Accurate prediction of positive cases(T P) of positive predictions from the test samples. Precision is

Accurate positive and inaccurate negative prediction(T(I:; + FNyomputed as specified in equation 36.

Accurate negative and inaccurate positive prediction(TN + FP)
(3

3) Specificity (Spe)

The accurate prediction of negative cases from the
diseased patient’s test samples to the ratio of accurate
prediction of negative cases and inaccurate prediction of
positive cases from the test samples. Specificity is computed
as specified in equation 35.

Accurate prediction of positive cases(T P)
Total number of positive prediction(T P + FP)

(36)
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5) Fl-score (F1)
F1-score is the harmonic mean of Precision and Recall/
Sensitivity. Equation 37 specifies F1-score computation.

Prex Sen
Fl=2X[—— 37
X[Pre+Sen] @7

The parameters in the computations are as follows:

1) TP: True Positive
2) TN: True Negative
3) FP: False Positive
4) FN: False Negative

C. Comparative Performance Analysis of the Various Clas-
sifiers Implemented for COVID-CT Dataset

The comparative performance analysis of the classifiers
implemented is based on the following two criteria; (A) K-
fold cross - validation for K-values of 4, 6, 8 and 10. (B)
Training data percentage of 40, 60 and 80.The performance
analysis presented in this section is based on COVID-
CT dataset. The 1000 highest ranked features selected by
ReliefF algorithm were input to the following classifiers:

1) k-Nearest Neighbors (KNN):
A supervised machine learning classifier, the k-
nearest neighbors (KNN) algorithm relies on the
distance between the query point and the other data-
points in the training dataset to make classifications.
The algorithm identifies the ‘k’ nearest neighbor of
the query point. The most common class label among
the ‘k’ neighbors is assigned to the query point. To
evaluate the performance of KNN classifier in this
study, we utilized Euclidean distance metric. We set
k = 4, where k value in the k-NN algorithm defines
the number of neighbors checked to determine the
classification of a specific query point.

2) Support Vector Machine (SVM):
We evaluated performance of SVM by inputting the
1000 highest ranked features and corresponding label
data vector as the training data.

3) Feed Forward Neural Network (NN):
Feed forward Neural Networks propagate informa-
tion in the forward direction in the network through
the input nodes. We input the 1000 highest ranked
features and corresponding label data vector as the
training data. We evaluated the neural network with
following specifications, one hidden layer of size
10, Levenberg-Marquardt training function and 1000
epochs.

4) Pre-trained AlexNet Neural Network:
AlexNet is a 8 layers deep convolutional neural
network. We evaluated a pretrained version of the
network in our study.

5) 7-layered ODCNN with in-built Adam optimizer

6) Mayfly optimized ODCNN

7) Moth flame optimized ODCNN

8) Proposed Rapid Navigation Optimization — based
ODCNN.

The performance of the proposed model was evaluated
and compared with that of other classifiers for K-fold values
of 4,6,8, and 10 and 40%, 60% and 80% training data
percentage. Highest values of accuracy, sensitivity, speci-
ficity, precision and Fl-score for the compared approaches
were achieved for K-fold value of 10 and 80% training
data. The classification accuracy of the rapid navigation
optimization-based ODCNN for the K-fold value of 10
was 97.26% with a performance improvement of 4.19%
than the standard moth flame optimized- deep CNN. The
sensitivity (recall) of the ODCNN also indicates an increase
of 591%, with sensitivity value at 94.30% for the K-
fold value of 10. The specificity of the rapid navigation
optimized- deep CNN for a K-fold value of 10 was 99%
with a performance improvement of 3.71% over the existing
moth flame optimized - deep CNN. The precision of the
rapid navigation optimized- deep CNN for a K-fold value
of 10 was 90.30% with a performance improvement of
3.67% over the existing moth flame optimized - deep CNN.
Table IV. presents a detailed comparative performance
analysis of the various classifiers based on K- fold 10. A
detailed comparative performance analysis of the various
classifiers based on 80% training data is listed in Table V.
The accuracy, sensitivity, specificity, precision and F1-score
of the proposed rapid navigation optimization-based deep
CNN classifier were 97.260%, 94.301%, 99%, 90.30% and
92.36%, respectively for the k-fold value 10 and 91.461%,
92.261%, 96.167%, 89.33% and 90.77%, respectively for
80% training data. The comparative analysis presented in
Table IV and Table V clearly indicates that the proposed
Rapid Navigation Optimization technique effectively tunes
the 7-layered customized DCNN and enhances classification
performance.

The accuracy, sensitivity (recall), specificity and preci-
sion of the rapid navigation optimization-based ODCNN
and other classifiers for K-fold value of 10 are depicted in
Fig. 7, 8, 9 and 10, respectively.

D. ROC Analysis for COVID-CT Dataset

The performance of the proposed rapid navigation
optimization-based deep CNN depending on the false pos-
itive rates as well as the true positive rate for the for
COVID-CT dataset is depicted in Fig. 11. When there is a
minimal 10% of error, the sensitivity of the rapid navigation
optimization-based deep CNN is 91.134% while the other
existing moth flame-based deep CNN attains a sensitivity
of 88.965%. When considering the minimal percentage of
error as 90%, the sensitivity of the RNO - based deep CNN
is improved to 97.164% which is 2.45% better than the
existing moth flame-based deep CNN with a sensitivity of
94.788%.
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E. Performance Analysis for COVID-CT Dataset with and
without Lung Segmentation

Pre-preprocessing of chest CT images obtained either
through hospitals or public benchmarking datasets is an
essential step in design of machine learning algorithms.
Segmentation of the lungs from the chest CT scans is
a significant pre-processing step. Lung segmentation de-
lineates the lung region (comprising of whole lung and
the lung lobes) from the back ground in a chest CT
image. In this research work, we applied region-based
segmentation to extract the lung region from the chest
CT image. We evaluated the impact of lung segmentation
on the performance of the proposed model. It is evident
that accuracy, precision, sensitivity (recall) and specificity
have reduced by 20.35%, 19.34%, 22.35%, and 18.57%
respectively, if CT scans are input without segmenting the
Region-of Interest, that is the lung area. Fig. 12 depicts the
comparative performance analysis of the proposed model
with and without lung segmentation for K-Fold value 10.
Table VI lists the performance analysis of the proposed
model with and without lung segmentation for K-Fold value
10.

FE. Performance Analysis for COVID-CT Dataset with and
without Data Augmentation

Given the limited number of COVID-19 CT scans in
the COVID-CT dataset, we performed data augmentation
on the small dataset. The main objective of applying data
augmentation was to evaluate our proposed model’s per-
formance and robustness on a larger and diverse dataset.
We performed data augmentation by using MATLAB’s
inbuilt imageDataAugmenter function. Every CT image was
subjected to rotation at various angles, and translation on
the horizontal and vertical axes. The augmented dataset
size is thrice as larger with variations of the data patterns.
The proposed model exhibited a marginal increase in the
performance metrics on the augmented dataset. Fig. 13
illustrates the performance analysis of the proposed model
with and without data augmentation for K-Fold value 10.
Table VII lists the performance analysis of the proposed
model with and without data augmentation for K-Fold value
10.

G. Performance Analysis of Proposed RNO-optimized OD-

CNN for COVIDx-CT-3A Dataset

To further validate and test performance of the proposed
Rapid navigation optimization — based DCNN on a larger
and different dataset, we utilized COVIDx-CT-3A. It is an
open access dataset with 425,024 CT slices from 5,312
patients [29]. This section presents the performance analysis
of RNO-optimized DCNN for COVIDx-CT-3A dataset.
Evaluation was done for K-fold values of 4,6,8, and 10
and 40%, 60% and 80% training data. Table VIII reflects
accuracy, precision, sensitivity (recall), specificity and F1-
score for COVID-CT and COVIDx-CT-3A datasets for the
k-fold value 10. Accuracy, precision, sensitivity, specificity,
and Fl-score for the k-fold value 10 were observed to

be 89.35%, 85.08%, 90.49%, 89.57% and 87.70%, respec-
tively.

Accuracy, precision, sensitivity, specificity, and F1-score
for the COVIDx-CT-3A dataset were 88.46%, 87.62%,
86.55%, 87.12% and 87.08%, respectively for 80% training
data. A comparative analysis for K fold 10 is shown in
Fig. 14. Performance metrics for the two datasets with
80% training data are shown in Table IX. ROC curve for
COVIDx-CT-3A dataset is illustrated in Figure 15.

H. Comparative Performance Analysis of Rapid Navigation
Optimizer — based DCNN with Research Works using the
COVID-CT Scan Dataset

The published research studies identified for a compar-
ative analysis have used the same public dataset [10] as
used in this proposed study. Table X presents a detailed
comparative performance analysis of the proposed RNO -
based deep CNN and research studies that have used the
same dataset [10]. Performance analysis clearly indicates
that our proposed model outperformed the other state-of-
art methods. As COVID-19 lesions affect pixel intensity
values in CT images, we exploited Haralick texture fea-
tures to identify abnormalities. Feature selection through
ANOVA and Chi-squared tests at the first stage assisted in
identifying four relevant Haralick features and eliminating
the correlated features.

To extract more complex and subtle features from the
four texture features, contrast, correlation, entropy and sum
entropy, we used a pre-trained ResNetl01, followed by
ReliefF-based feature selection. ReliefF algorithm consid-
ered 10 neighboring hits and misses to estimate the feature
quality and relevance, thereby eliminating the redundant
features and reducing feature vector size from 544x5001
to 1000x1.

The 1000 highly discriminating features were input
to the 7-layer optimized DCNN and trained for only 30
epochs. The proposed RNO optimized 7-layer ODCNN is
light-weight and has only 2k parameters. It exhibited high
performance metrics to classify between COVID-19 and
non-COVID -19 images.

Tuning of large number of parameters in DNNs is a
critical issue. Our proposed optimizer combines the advan-
tages of Moth-Flame optimizer and May fly optimizer to
obtain accuracy of 97.26%, sensitivity of 94.30% and 99%
specificity on a size-limited public dataset.

5. ConcrusioN AND Future WoRk

Lack of availability of large repositories of annotated
chest CT images was the primary motivation to develop
a model that would learn efficiently from a size-limited
dataset. Since the dataset is too small to train a DNN from
scratch we exploited texture features of CT scan images, and
rich feature representations from a pre-trained ResNet 101.
We designed a robust joint feature descriptor that considers
edge response values in different directions. As the joint
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TABLE IV. Comparitive analysis of classifiers based on K-Fold 10 for COVID-CT dataset.

Classifiers | K-Fold 10 |

| Acc(%) | Pre(%) | Sen(Recall)(%) | Spe (%) | F1 Score |

\ K-Nearest Neighbor(KNN) | 7992 | 6733 | 76.42 | 8276 | 7159 |
\ Support Vector Machine(SVM) | 8075 | 69.33 | 76.82 | 84.08 | 72.88 |
\ Feed Forward Neural Network | 8441 | 7699 | 81.23 | 8711 | 79.05 |
\ Pre-trained AlexNet Neural Network | 8757 | 7792 | 84.34 | 9271 | 81.00 |
| ODCNN with Adam Optimizer | 9040 | 7858 | 8535 | 9279 | 8182 |
| ODCNN with Mayfly Optimizer | 9055 | 8322 | 8768 | 9486 | 8539 |
| ODCNN with Moth Flame Optimizer | 9308 | 8663 | 8872 | 9533 | 87.66 |
| ODCNN with proposed Rapid Navigation Optimizer | 97.26 | 90.30 | 94.30 | 99.00 | 9226 |

TABLE V. Comparative analysis of classifiers based on 80% training data for COVID-CT dataset.

Classifiers Training Percentage 80%

\I Acc(%) | Pre(%) | Sen(Recall)(%) | Spe (%) | F1 Score }
| K-Nearest Neighbor(KNN) | 7824 | 6591 | 7456 | 8108 | 6996 |
\ Support Vector Machine(SVM) | 7893 | 68.06 | 75.21 | 8323 | 7146 |
\ Feed Forward Neural Network | 8224 | 7289 | 79.51 | 8539 | 76.06 |
\ Pre-trained AlexNet Neural Network | 83.87 | 80.67 | 81.92 | 8970 | 8129 |
| ODCNN with Adam Optimizer | 8659 | 8330 | 8326 | 9185 | 8328 |
| ODCNN with Mayfly Optimizer | 8832 | 8657 | 8530 | 9378 | 8593 |
\ ODCNN with Moth Flame Optimizer | 90.08 | 87.21 | 87.34 | 9401 | 8727 |
| ODCNN with proposed Rapid Navigation Optimizer | 91.46 | 89.33 | 92.26 | 96.16 | 90.77 |

100 T T

90 -

Accuracy(%)

I Neural Network

[IFuzzy Classifier

[ IDeepCNN

I Mayfly-based DeepCNN

I Mothflame-based DeepCNN

I Rapid Navigation Optimization-based DeepCNN
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Figure 7. Comparative analysis of accuracy based on k-fold for COVID-CT dataset
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Figure 8. Comparative analysis of sensitivity (recall) based on k-fold for COVID-CT dataset
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Figure 9. Comparative analysis of specificity based on k-fold for COVID-CT dataset
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Figure 10. Comparative analysis of precision based on k-fold for COVID-CT dataset
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Figure 11. ROC analysis for COVID-CT dataset
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Performance analysis based on lung segmentation for COVID-CT data set

WITH LUNG SEGMENTATION WITHOUT LUNG SEGNETATION

W Precision % = Recall (Sen) %  w Specificity%

Figure 12. Performance analysis with and without lung segmentation

TABLE VI. Comparative analysis of RNO-Optimized DCNN based on lung segmentation for COVID-CT dataset.

| K-Fold 10 |
| Acc(%) | Pre(%) | Sen(%) | Spe(%) | Fl-score |

| Without lung segmentation | 76.91 | 7096 | 7195 | 8043 | 7145 |
| With lung segmentation | 97.26 | 90.30 | 9430 | 99.00 | 9226 |

Pre-processing

Performance analysis based on data augmentation for COVID-CT dataset

WITH DATA AUGMENTATION WITHOUT DATA
AUGMENTATION

= Precision % m Recall (Sen) % m Specificity %

Figure 13. Performance analysis with and without data augmentation

TABLE VII. Comparative analysis of RNO-Optimized DCNN based on augmented COVID-CT dataset.

| K-Fold 10 |
| Acc(%) | Pre(%) | Sen(%) | Spe(%) | Fl-score |

| With augmentation | 99.61 | 91.65 | 96.64 | 99.89 | 94.08 |
| Without augmentation | 97.26 | 90.30 | 9430 | 99.00 | 9226 |

Pre-processing
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TABLE VIII. Comparative analysis of RNO-Optimized DCNN based on K-Fold 10 for COVID-CT and COVIDx-CT-3A datasets.

Dataset | K-Fold 10
| Ace(%) | Pre(%) | Sen(%) | Spe(%) | F1-score

|
|
| COVID-CT dataset[10] | 97.26 | 9030 | 9430 | 99.00 | 9226 |
| COVIDx-CT-3A dataset[29] | 89.35 | 85.08 | 9049 | 8957 | 87.70 |

Performance analysis based on COVID-CT and COVIDx-CT-3A datasets
for K-fold 10

COVID-CT COVIDX-CT-3A

m Accuracy% ™ Precision % Recall(Sen) % Specificity%

Figure 14. Comparative analysis for COVID-CT and COVIDx-CT-3A datasets

TABLE IX. Comparative analysis of RNO-Optimized DCNN based on 80% training data for COVID-CT and COVIDx-CT-3A datasets.

| Training Percentage 80%
| Acc(%) | Pre(%) | Sen(%) | Spe(%) | Fl-score |

| COVID-CT dataset[10] | 9146 | 8933 | 9226 | 96.16 | 90.77 |
| COVIDx-CT-3A dataset[29] | 88.46 | 87.62 | 86.55 | 87.12 | 87.08 |

Dataset

—&— KNN
—e— SVM
—&— Neural Network
Fuzzy Classifier
DeepCNN
—©— Mayfly-based DeepCNN
Mothflame-based DeepCNN
—O— Rapid g o based DeepCNN

30 40 50 80 70 80 90 100
FPR(%)

Figure 15. ROC analysis for COVIDx-CT-3A dataset.

feature descriptor does not rely solely on pixel intensities,
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TABLE X. Comparative analysis of RNO with state-of-art.

| S.No. | Reference | Acc(%) | Sen(%) | Spe(%) |
| 1. | Punitha[9] | 9237 | - | - |
2. Saha 90.00
Sen[23]
| 3. | Mishra[26]| 8834 | 88.13 | 90.51 |
| 4. | Shaban[27]| 96 | 71 | - \
5. Proposed 97.26 94.30 99.00
RNO-
based
ODCNN

it is more robust against different variations and random
noise. Incorporating the Directional Local Binary Pattern
code (DLBP) eliminates the dependency of LDP code on
the selection of ‘k’ most significant directional responses.
Performance of the light-weight customized ODCNN was
further enhanced by integrating two nature-inspired opti-
mizers, viz. Moth-Flame Optimizer and Mayfly optimizer
to tune the weights of the ODCNN. The performance of
the proposed model was evaluated and compared with that
of other classifiers for K-fold values of 4,6,8, and 10. The
training data percentage was set at 40%, 60% and 80%.
Highest values of accuracy, sensitivity and specificity for the
compared approaches were achieved for K-fold value of 10
and 80% training data. The accuracy, sensitivity, and speci-
ficity of the proposed Rapid Navigation Optimization-based
deep CNN classifier were 97.260%, 94.301%, 99% for the
k-fold value 10, and 91.461%, 92.261%, and 96.167%,
respectively for 80% training data. We evaluated our pro-
posed model’s performance and robustness on a larger and
diverse dataset by augmenting the COVID-CT dataset. The
model performed well on the augmented dataset, exhibiting
a marginal increase in the performance metrics. To fur-
ther validate and test performance of the proposed Rapid
Navigation Optimization — based ODCNN, we evaluated
the model’s performance on a larger dataset, the COVIDx-
CT-3A dataset. Accuracy, precision, sensitivity, specificity,
and Fl-score for the k-fold value 10 were observed to
be 89.35%, 85.08%, 90.49%, 89.57% and 87.70%, respec-
tively. Our light-weight model aimed at size-limited dataset
has performed effectively on a larger and diverse dataset
with substantial classification accuracies. Thus, we have
verified the generalization capability of our proposed light-
weight RNO-based ODCNN model. Performance analysis
with related research works that have utilized COVID-
CT dataset clearly indicates that our proposed model has
outperformed the other state-of-the art methods. However,
this research work is limited to detection of COVID-19
infection. Therefore, in the future the dataset shall be
expanded to include CT images of other types of pulmonary
infections, viz, pneumonia. The proposed model shall be
modified appropriately to facilitate multi-class detection and

classification.
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