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Abstract: Effective inventory management is crucial for businesses to minimize costs and maximize operational efficiency. This paper
explored the optimization of resource allocation on the Internet of Things (IoT) for improved inventory management and developed
an inventory management system using IoT and Wireless Sensor Network (WSN) to optimize the resource allocation. In this paper,
the dataset that is taken into consideration is the primary dataset, which is collected from different locations with the help of WSN,
temperature, humidity, and stock of mapping of the place where data is allocated. Further, preprocessing of the data is done, and then
the data is split as training and testing data. Machine learning models, i.e., decision tree, random forest, regression model, and ensemble
model (combination of decision tree, random forest, and regression model), are applied to classify and train the data. The novelty of
the research is establishing an inventory management system employing IoT and WSN, combining machine learning and ensemble
models for resource allocation optimization, and outperforming traditional approaches. The result metrics such as Root Squared Mean
Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Accuracy are taken into consideration to evaluate
the performance of the model. Experimental results are obtained the values of RMSE, MAE, and MSE are 0.25, 0.0625, and 0.625,
respectively. Also, the overall accuracy of the proposed model would be obtained as 93.75%. The comparative analysis shows that the
proposed model outperformed the existing conventional model in terms of accuracy.

Keywords: Inventory Management, Internet of Things, Wireless Sensor Network, Resource Allocation Optimization, Machine
Learning, Decision tree

making helps firms distribute scarce resources like labour,
storage space, and vehicles. Radio Frequency Identification

1. INTRODUCTION
Today, successful businesses require efficient inventory

management. Operating efficiently and having timely access
to the right goods and resources could make or break a
business. Here, the Internet of Things (IoT) has shown a
new era of inventory management, allowing for unprece-
dented resource allocation optimization. To better manage
inventory resources, businesses could use IoT devices, data
analytics, and real-time monitoring. Innovative technologies
are needed to achieve operational excellence and a compet-
itive edge in supply chain management. Business inven-
tory management has been transformed by the IoT, which
optimizes resource allocation in real-time [1]. For higher
productivity, lower costs, and happier customers, Internet of
Things-based stock management is being promoted. With
IoT devices and data analytics, businesses could better
manage stock, allocate resources, and adapt to changing
customer preferences. IoT has impacted stock management,
as is well known. Better inventory tracking, fewer stockouts,
and fewer surpluses are among its suggested benefits, ac-
cording to extensive research [2]. IoT data-driven decision-

(RFID) and other wireless, mobile, and sensor devices have
made durable industrial systems and applications possible
thanks to the IoT. Recently, industrial IoT applications have
been developed [3]. IoT, an emerging technology, is gaining
popularity. The IoT envisions a network connecting all
physical objects to share information about themselves and
their surroundings. IoT platforms could improve lives by
linking all things collectively. Many collaborative IoT appli-
cations, such as smart homes, medical facilities, vehicle-to-
vehicle, and vehicle-to-person traffic control, are emerging
[4]. The importance of technical advancement and opera-
tional effectiveness in today’s fiercely competitive business
environment inspired the selection of ”Optimizing Resource
Allocation in IoT for Improved Inventory Management” as
the conference’s theme. Costs, customer satisfaction, and
the bottom line are just a few of the areas that inventory
management could affect directly. The IoT presents a once-
in-a-generation chance to radically alter the way essential
resources are distributed in this field. Investigating and
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learning about the use of IoT technology in inventory
management could help businesses become flexible, save
money, and make educated decisions based on data. This is
a topic that is both relevant and potentially transformative,
with the potential to alter standard inventory procedures and
open the door to long-term success in the business world.

A. IoT in Inventory Management

The term IoT refers to a network of billions of con-
nected physical objects that collect and exchange data
about their usage and surrounding conditions. Sensors are
always updating the network with information about the
devices’ current states of health. The Internet of Things
allows machines to automatically share information in real-
time. Inventory management is an integral aspect of supply
chain management (SCM) since it has implications for both
production and price. Inventory management’s goal is to
optimize customer satisfaction at the lowest possible cost,
and this is achieved through careful planning of inventory
replenishment strategies [5]. It is the goal of inventory man-
agement to minimize stockouts and maximize returns from
satisfied customers through careful planning and control of
inventory levels. When and how many orders should be
placed, given supply lead time, on-hand inventory, etc. The
traditional methods of inventory management have been put
to the test by the new technologies of Industry 4.0. As new
technologies emerge, it would be necessary to develop and
test novel models and methods for determining inventory
replenishment policies [6].

1) Impacts of IoT on Inventory Management

IoT has transformative effects on inventory management,
bringing many benefits that change inventory practices.
Some major impacts (as shown in Figure 1):

Real-time contribution for

effective supply chain Management warehouse

Al Algorithms

IoT offers accurte location
monitoring and improved
inventry tracking

Better Lead Management

Figure 1. Impact of IoT on Inventory Management [7]

1) Real-time contribution to the efficient supply
chain: Technology employed by IoT devices allows
for completely hands-free data collection. Inventory
management is a crucial facet of supply chain man-
agement (SCM), as it encompasses all organizational
stock-related decisions [8].

2) Management Warehouse: The Internet of Things
(IoT) and 5G wireless technology improvements are
helping to improve warehouse management logistics.
The goal of warehouse management is to maximize
storage capacity. Warehouse inventory is managed

with the use of a computerized warehouse manage-
ment system [9].

3) Artificial Intelligence (AI) Algorithms: The advent
of Al has allowed the development of sophisticated
algorithms that could handle stocks considerably
more efficiently than any human could. With the
development of deep learning technology, there has
been a resurgence of interest in the potential of Al
in the medical field [10].

4) IoT offers accurate location monitoring and im-
proved inventory tracking: Products equipped with
IoT labels could streamline logistics, as The Daily
Plan IoT claimed. This aids in both normal prepara-
tion and the search for ways to speed up the supply
chain in the event of an emergency.

5) Better Lead Management: Estimating the time it
would take to assemble all the components needed
for manufacturing is made much easier with the
help of IoT-based inventory tracking. Changing the
focus from managing leads to managing patients
with implants is a major paradigm change [11].

B. Importance of Resource Allocation in IoT

The goal of resource allocation in the 10T is to maximize the
performance of IoT systems and applications by equitably
distributing and optimizing available resources. Resources
include everything from data storage space and processing
power to electricity and sensors. IoT solutions’ perfor-
mance, scalability, and cost-effectiveness are all strongly
impacted by how well resources are allocated [12]. The
efficient distribution of devices and sensors to collect data
from optimal locations and times is a cornerstone of IoT
resource allocation. To do this, need to figure out where to
put sensors so that the most useful data can be collected,
be it about the environment for smart cities, machines
for industrial IoT, or health for healthcare applications
[13]. Managing the network bandwidth required to transmit
data from these sensors is also an important aspect of re-
source allocation, especially when dealing with the massive
amounts of data created by many IoT devices. Allocating
computing resources for data processing and analysis is
another critical aspect of resource allocation. For timely
insights and decisions, it’s essential to provide sufficient
computational power and storage capacity to analyze the
massive amounts of data produced by the IoT. To minimize
delays and maximize throughput, it is common practice
to locate edge computing resources adjacent to the data
source. Energy management is an additional crucial aspect
of IoT resource allocation for battery-operated devices [14].
By minimizing energy consumption with methods like low-
power modes and data compression, IoT devices could last
longer without being recharged or having their batteries
replaced [15].

1) Role of IoT Devices

The world is rapidly transforming in response to the rapid
development of technology to meet forthcoming challenges
and move toward automation. Towns are transforming into
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smart cities because of the widespread adoption of various
IoT devices, which connect every event to the network.
Intelligently, the IoT devices record and transmit data
about every occurrence [16]. The rapid expansion of the
internet over the last two decades has produced far-reaching,
positive effects on economies and societies worldwide.
The ability to create and consume services in real time
was the primary benefit of this innovation. Recently, the
Internet of Things (IoT) has promised to provide the same
benefit through its cutting-edge technologies, allowing for
an improved user experience by adjusting the physical
space in which the user performs their tasks. The Internet
of Things (IoT) provides a wide range of benefits in
industries as varied as medicine, commerce, transportation,
safety, agriculture, the built environment, and the natural
environment [17][18]. The Internet of Things (IoT) came
into being [19], has experienced explosive growth, and is
now firmly entrenched in many people’s daily lives and
places of business. Since its inception, the IoT has been
subject to constant development and change, making it hard
to pin down. However, it could be viewed as a system
wherein digital and analogue devices and computer systems
are connected and assigned unique identifiers (UIDs) so
that these systems and devices can automatically share
information. Usually, this involves a human communicating
with a central device or app, such as a smartphone, which
then communicates with other devices on the edge of the
Internet of Things. If necessary, the peripheral devices could
carry out the task at hand and relay the results to the
central device or app, where the user could view them.
The IoT concept has improved the world by allowing for
more device connectivity that is both open and secure,
scalable, private, and compatible with a wide variety of
other systems [20]. The IoT has many potentials uses in
resource management, spanning many fields and industries.
The IoT has completely altered the processes of resource
management and optimization thanks to its capacity to link
and communicate with a vast array of devices and sensors.
Consider some of the following IoT resource allocation
applications and Figure 2 shows the architecture for this

as given below [21].

v ] ¥

| Smart Manufacturing | | Smart Agriculture | | Smart Healthcare & Smart Cities

Smart Logistic and Supply Chain
Management

Smart Energy
Management

Figure 2. Application of IoTs [21]

1) Smart Manufacturing: Optimizing production and
predictive maintenance with IoT technology trans-
forms the industry. Using real-time IoT sensors,
equipment failures could be predicted for proactive
maintenance. A predictive approach reduces down-
time and optimizes maintenance resource allocation
to ensure continuous operation [22].

2) Smart Logistic and Supply Chain Management:
Precision farming uses IoT sensors to monitor soil
quality, moisture, and crop health, allowing farmers
to use water and fertilizers effectively and optimize
agricultural output. [oT-enabled livestock monitoring
tracks animal health and location, allowing farmers
to tailor food and medication to individual animals
[23].

3) Smart Agriculture: The use of IoT sensors to
monitor soil quality, moisture levels, and crop health
allows farmers to optimize agricultural output by
allocating water and fertilizers precisely. [oT-enabled
livestock monitoring tracks animal health and loca-
tion, allowing farmers to tailor food and medication
distribution [24].

4) Smart Energy Management: Energy management
in utilities and homes is transformed by IoT devices.
These devices allow utilities to efficiently allocate
energy resources during peak periods by adjusting
usage in real-time, reducing grid strain. Smart homes
use loT-enabled devices to regulate heating, cooling,
and lighting based on occupancy and user prefer-
ences to save energy. This smart allocation saves
a lot of energy, making residential spaces more
sustainable and cost-effective [25].

5) Smart Healthcare & Smart Cities: In smart health-
care, [oT tracks hospital assets to efficiently allocate
medical equipment across departments and ensure
resource availability. IoT devices also monitor pa-
tients in real-time, helping healthcare providers al-
locate staff and resources, especially in critical care.
Waste management IoT-enabled smart bins notifies
collection services when full, streamlining resource
allocation, reducing costs, and improving cleanliness
[26].

There are many problems remaining to resolve in this
field. The main problem in optimizing resource alloca-
tion in IoT for improved inventory management revolves
around finding efficient ways to utilize IoT technologies to
optimize inventory tracking, monitoring, and management
processes. This includes addressing challenges such as real-
time data collection, analysis, and decision-making to mini-
mize stockouts, overstocking, and operational inefficiencies.
Additionally, it involves exploring how to allocate resources
effectively within the IoT framework to enhance inventory
visibility, accuracy, and responsiveness while considering
factors like cost-effectiveness, scalability, and sustainabil-
ity. The research aims to overcome these problems and
challenges by enhancing inventory management through
efficient resource allocation in IoT systems, minimizing
waste and maximizing utilization for improved operational
efficiency and cost savings. The research contributes by
developing an integrated framework for inventory manage-
ment in IoT environments, leveraging fuzzy logic and en-
semble machine learning for improved accuracy. It assesses
scalability and usability across diverse contexts, refining
integration for seamless operation. Through impact assess-
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ment, it demonstrates tangible enhancements in inventory
management outcomes, promoting operational efficiency
and cost reduction. The objectives of this research are as
follows:

1) To develop an integrated framework that seamlessly
integrates real-time inventory monitoring, condition
monitoring, data analytics, demand forecasting, and
predictive analytics to optimize resource allocation
in IoT-enabled inventory management systems.

2) To enhance the accuracy and efficiency of resource
allocation decisions, apply fuzzy logic and ensem-
ble machine learning for condition monitoring and
demand forecasting.

3) To evaluate the scalability and generalizability of
the proposed framework across diverse inventory
contexts, providing insights into its applicability in
various operational settings.

4) To demonstrate tangible improvements in inventory
management, contributing to operational efficiency
and cost reduction.

The remaining parts of this research are structured as
described below. Previous research is analyzed and dis-
cussed in Section 2. In Section 3, the suggested framework
is assessed, and its implications are examined. In the next
part (section 4), the findings are reviewed, and a brief
explanation is also provided for greater comprehension. The
study is ended in Section 5, which includes some thoughts
on potential future work and the conclusion of the work.

2. LITERATURE OF REVIEW

A review of the literature reveals that many authors have
attempted this method and published their results.

Ibrahim et al. (2024) [27] designed a method for
scheduling packets and allocating resources in 6G networks
that were based on the fishnet technique. The author theo-
retically improved device connection in a 6G-IoT scenario
by building a network based on the Sierpinski Triangle.
Analysis showed that Fishnet6G performs better than other
methods on these measures, proving that it successfully
tackles the issues with 6G-IoT networks.

Tan et al. (2024) [28] proposed the inventory man-
agement process which is modelled using a nonlinear pro-
gramming approach that relies on demand variations. The
efficient system for managing inventory was implemented
via the use of a multi-objective grey wolf optimization
(MOGWO) approach, which minimizes storage space re-
quirements while optimizing profit.

Shuaib et al. (2023) [29] proposed a comprehensive
approach, dubbed dynamic energy-efficient load balancing
(DEELB), to address all of these IoT resource allocation
issues. With a decrease of 30.17 % in packet loss ratio
analysis and a decrease of 10.352% in delay charges,
the simulation results showed that the proposed method
is an effective resource allocation approach for fog load

balancing.

Fang et al. (2022) [30] addressed the stockout issue, and
the team suggested introducing a Hub Vendor Management
Inventory (VMI) system. As a result of this study’s findings
and contributions, inventory management operations had
been improved, the total execution time and cost have been
cut, response times have been cut for the customer’s benefit,
and system performance efficiency has been raised.

Han et al. (2022) [31] proposed a case where Vegetation
Sampling Protocols (VSPs) hire the Metaverse platform to
collect this information from a network of IoT devices. Mo-
tivated by their self-interest, device owners actively choose
a VSP. In the hybrid evolutionary dynamics, populations
of owners of various devices could use various revision
protocols to adapt their tactics to changing conditions.
Extensive simulations show that using a hybrid protocol
could result in evolutionary stable states.

Liang et al. (2021) [32] suggested a Deep Q-Network
(DQN) based scheme to optimize bandwidth utilization
and power consumption in an Industrial Internet of Things
(ITIoT) environment. To develop a DQN model that com-
bines two DNNs with a Q-learning model. The scheme
outperformed other representative schemes in terms of both
bandwidth utilization and energy efficiency, as shown by
experimental results.

Tianqing et al. (2021) [33] introduced a new approach
to resource allocation known as concurrent federated rein-
forcement learning. Taking advantage of federated learn-
ing’s safeguards and reinforcement learning’s prowess in
solving complex problems, the scheme also incorporates
concurrency in the form of joint decision-making to en-
sure that the system-wide resource allocation strategies are
optimal. Experimental results demonstrate state-of-the-art
performance in terms of system-wide utility, completion of
tasks speed, and utilization of resources.

Ran (2021) [34] constructed a system for managing
inventories using cloud-based collaborative computing. The
genetic algorithm was used as a benchmark to verify that
the system described here really works. The experimental
findings show that the weighted average of eigenvalues and
fitting prediction approach presented here has the best fitting
effect and the least error in the demand forecast of machine
spare parts, with a minimum error of just 2.2% after fitting.

Deng and Yongji (2021) [35] used deep learning’s
long short-term memory (LSTM) theory to develop a deep
inventory management (DIM) solution for this model. The
testing findings revealed that DIM’s mean inventory demand
forecast accuracy surpasses 80%, reducing inventory cost
by 25% when compared to other state-of-the-art approaches
and detecting anomalous inventory activities quickly.

Mashhadi et al. (2020) [36] presented that IoT-enabled
manufacturing equipment could provide real-time data that

https://journal.uob.edu.bh


https://journal.uob.edu.bh

B
RS
28

Ll faas

%,

10 Allgy

Int. J. Com. Dig. Sys. 16, No.1, 685-704 (Aug-24) - 689

could be used by the Additive Manufacturing (AM) cloud to
automatically manage manufacturing resources. Extensive
simulations confirmed that the suggested neural network
auctions could find a better AM Cloud utility than existing
auction schemes.

He et al. (2020) [37] explained that blockchains were
ideally suited for edge centric IoT scenarios and how the
blockchains solved the security and privacy problems that
arise when using edge computing to power IoT. The paper
presented simulation results that demonstrate the efficiency
of the proposed edge computing resource allocation scheme.

Ren et al. (2020) [38] considered the optimal distri-
bution of resources for an Ultra-reliable low-latency com-
munications (URLLC) system that supports mission-critical
Internet of Things (IoT) connectivity. The writers seek a
URLLC-compliant, secure, mission-critical IoT network of
communication to use in the event that an access point
attempts to eavesdrop on devices sending out safety-critical
communications. In simulations, the suggested approach
demonstrates fast convergence and outperforms the current
benchmark algorithm.

Na et al. (2020) [39] introduced joint optimization
of Unmanned Aerial Vehicle (UAV) trajectory, subcarrier
collection, subcarrier power, and sub-slot distribution aim
to maximize the minimum feasible rate between all uplink
nodes throughout the constraint of the feasible total rate of
all downlinks the nodes within each time slot. The proposed
alternate iterative algorithm converges well. The proposed
scheme outperformed conventional resource allocation tech-
niques because it raises both the average and total rates that
could be achieved by a network of nodes.

Choksi et al. (2019) [40] introduced a method of
allocating resources that considers multiple objectives, each
of which was subject to its unique constraints. The authors
also suggested a parameter-driven algorithm for allocating
resources. In the event of resource overuse, the proposed al-
gorithm first employed multi-objective theory for allocation
before switching to a priority-based scheduling approach.
The authors evaluated the methods against those already in
use in the literature. The simulation results show that the
methods successfully allocate and schedule resources.
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Table 1 shows comparative summary of the related work.

TABLE I. Table 1. Comparative Summary of Related Work

Authors
Years

and

Techniques

Results

Strength

Weakness

(2024) [27]

Ibrahim et al.

Fishnet

demonstrates
that Fishnet6G
outperforms existing
approaches across these
metrics, showcasing
its effectiveness
in addressing the
challenges of 6G-IoT
networks.

Findings

Provides a structured
approach to problem-
solving.

Diagrams could become
complex with many con-
tributing factors.

Tan et
(2024) [28]

al.

MOGWO

The effective inventory
management system is
realized using a multi-
objective  grey  wolf
optimization (MOGWO)
method, reducing storage
space while maximizing
profit.

finds
multiple

Efficiently
solutions
objectives.

for

Convergence speed
could vary based on
problem complexity.

Shuaib et
(2023) [29]

al.

DEELB

With a decrease of
30.17% in packet
loss ratio analysis
and a decrease of
10.352% in  delay
charges, the simulation
results showed that the
proposed method is
an effective resource
allocation approach for
fog load balancing.

Efficient resource alloca-
tion

Complexity

Fang et
(2022) [30]

al.

VMI Sys-
tem

Findings show that the
inventory management
operations have been
improved, the total
execution time and cost
have been cut, response
times have been cut for
the customer's benefit,
and system performance
efficiency has  been
raised.

Real-time
tracking

inventory

Data integration

Han et
(2022) [31]

al.,

VSPs

The findings indicate
that  having  access
to comprehensive
information about all
payoffs results in better
strategy adaptation than
relying on  pairwise
imitation, where only
the opponent's payoft is
considered.

Scalability

Centralized control

Continued on next page

https://journal.uob.edu.bh



https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No.1, 685-704 (Aug-24)

0
¥y
"IN
Lle faa;
Dot

2,

10 Allgy

691

TABLE I - continued from previous page

Authors and | Techniques| Results Strength Weakness
Years
Liang et al., | DON The scheme outperforms | Adaptability Training complexity

(2021) [32]

other representative
schemes in terms
of both  bandwidth

utilization and energy
efficiency, as shown by
experimental results.

Tianqing et al.
(2021) [33]

Concurrent
federated
reinforce-
ment
learning

Experimental results
demonstrate state-of-the-
art performance in terms
of system-wide utility,
completion of  tasks
speed, and utilization of
resources.

Distributed learning

Communication
overhead

Ran
[34]

(2021)

Cloud-
based
collab-
orative
computing

The experimental results
reveal that the weighted
average of eigenvalues
and fitting prediction
technique has the best
fitting effect and the
lowest demand forecast
error for machine spare
parts, at 2.2% after
fitting.

Resource pooling

Latency

and
(2021)

Deng
Yongji
[35]

LSTM

The testing findings re-
veal that DIM's mean in-
ventory demand forecast
accuracy surpasses 80%,
reducing inventory cost
by 25%.

Temporal sequence mod-
eling

Resource-intensive

Mashhadi et
al. (2020) [36]

AM Cloud

simulations
confirmed that the
suggested neural
network auctions could
find a better AM Cloud
utility  than  existing
auction schemes.

Extensive

Adaptive resource man-
agement

Dependency on cloud in-
frastructure

He et al. (2020)
[37]

Edge cen-
tric IoT

The paper presented
simulation results
that demonstrate
the efficiency of
the  proposed  edge
computing resource
allocation scheme.

Reduced latency

Limited
power

processing

Ren et al
(2020) [38]

URLLC

The proposed algorithm
has been shown to
converge quickly in
simulations, and it
outperforms state-
of-the-art benchmark
algorithms.

Ultra-reliable low-
latency communication

Implementation
challenges

Continued on next page
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TABLE I - continued from previous page

Authors and | Techniques| Results Strength Weakness
Years
Na et al. (2020) | Alternate The proposed | Convergence speed Sensitivity to initial con-
[39] iterative scheme outperforms ditions
algorithm | conventional  resource
allocation techniques
because it raises both the
average and total rates
that could be achieved
by a network of nodes.
Choksi et al. | Parameter- | The simulation results | Flexibility in optimiza- | Parameter tuning com-
(2019) [40] driven show that the methods | tion plexity
algorithm | successfully allocate and
schedule resources.
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3. REsearcH METHODOLOGY

Resource allocation in inventory management could be
improved using sensors. Using the IoT as a lens, this
study examines the unique features of business operations
throughout the supply chain. To optimize inventory-wide
resource allocation, a fuzzy decision model is developed to
offer a decision theory for the nodes of the inventory. The
proliferation of IoT has resulted in several streams of real-
time data and a substantial strengthening of ties between
businesses throughout the supply chain. By developing a
six-point fuzzy decision-making model, businesses could
boost their resource allocation’s productivity and bottom
line. Decision-making model to enhance inventory node
choice procedures. Models for the most efficient distribution
of resources might vary widely amongst providers. To en-
hance businesses’ profit-transformation capabilities and gain
managerial choices for cloud platforms, a fuzzy decision-
making model is established to pinpoint the inventory
decision-making point that optimizes resource allocation
within a given enterprise’s operational capacity. It’s like
having a road map in the head.

A. Techniques Used

This section gives a summary of all the techniques that are
used in this work.

e Wireless Sensors Network WSN is a common type
of underlying network technology. WSNs are made
up of several microsensor nodes that have minimal
communication, storage capabilities, and processing
[41]. The linked nodes could interact with one another
via any channel, either directly or through an estab-
lished protocol. Due to its format-free architecture,
wireless networks might support many independent
nodes that are linked together in various ways. Since
the network’s topology is flexible, any node in the
configuration might be added or withdrawn without
impacting the rest of the network. In contrast to pas-
sive topologies, WSNs are actively self-organizing.
Because WSN networking does not need the use of
wires, it could be used in settings like houses and
offices where the establishment of a network would
otherwise be prohibitively expensive. The WSN re-
lies on radio communication methods, and so do
its administrators. Protecting sensitive information
is a top priority in many different industries and
maximizing the efficiency of wireless sensor networks
(WSNss) relies heavily on node and network energy
efficiency [42]. Because of their versatility, sensor
nodes could be used in many contexts. These char-
acteristics provide a potential approach to detecting
tasks like power, communication, and processing,
and these characteristics could be deployed quickly
[43]. Applications need several levels of management,
monitoring, and tracking because of the diverse nature
of networks. The architecture of WSN for inventory
management is shown in Figure 3.

‘_m
inputs

. ﬁ o), f
& Wi-Fi(@reless — —

User Internet) Base Station

Sensor Nodes

Wireless Sensor Network

Figure 3. The architecture of WSN for inventory management [44].

o Fuzzy Logic Fuzzy logic is a structured approach
to trade with data that is difficult to define. A more
specific definition of fuzzy logic is a logical system
for reasoning under uncertainty that takes a broad
view of classical two-valued logic (or Boolean logic).
Fuzzy logic encompasses a wide range of concepts
and skills that use fuzzy sets, which are programs
with fuzzily defined borders. Fuzzy logic enables
the definition of intermediate values between the
two conventional evaluations of evaluations. In the
context of fuzzy expert systems, fuzzy logic is a
generalization of traditional (Boolean) reasoning that
has been expanded to deal with the theory of limited
truth—truth rates that fall somewhere between totally
true and false. A fuzzifier (or fuzzification) is one
of the f components of a fuzzy expert system (or
Defuzzification). Fuzzy logic has an attractive way to
deal with the real world rather than trying to describe
how things are. The subsequent Figure 4 signifies the
block diagram of the Fuzzy logic system.

| Rules |

Crisp Crisp
@_'
outputs

Fuzzy Fuzzy

m—
input sets output sets

Figure 4. Architecture of Fuzzy Logics [45].

o Fuzzy Control Rules
The fuzzy control rule could be used to describe the
level of expertise possessed by a professional in a
related field. Once feedback and input are considered
when using closed-loop method control, the fuzzy
rule could be described as a series of IF-THEN
statements that determine what action must be taken
in each given situation. Fuzzy rules are governed by
a set of rules that are developed based on human
perception or knowledge and, hence, are context de-
pendent. Linguistic and fuzzy set parameters are used
to define the relationship between the ”if” and “then”
halves of a fuzzy IF-THEN rule. The IF section might
be employed to gather amorphous conditions, and the
THEN section could be used to produce a result with
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a continuously shifting meaning. This IF-THEN rule
is frequently used in the fuzzy interpretation method
to determine how well the incoming data meets the
rule’s condition.

Fuzzy Mapping Rules

The output-input mapping provided by fuzzy map-
ping rules makes use of language-specific factors
to maximize efficiency. The substance of a fuzzy
mapping rule is a diagram of fuzzy, which depicts
the connection between the fuzzy output and input. A
link between output and input in real-world products
could be difficult to find, and even when one is found,
the relationship between them could be confusing. In
certain circumstances, it makes sense to use fuzzy
mapping rules. Like how humans make use of insight
and intuition, a series of fuzzy mapping rules might
be used to evaluate the entire function rather than
relying on a single fuzzy rule mapping. To illustrate
the development of fuzzy rule mappings using AC,
consider the following case: if the temperature is low,
the heater motor must be cranked quickly. Rules need
to be defined differently depending on the input tem-
peratures. There are several dimensions to the input
variables in most real-world functions. A common
example of an input is the difference between the
current temperature and the AC rate of temperature
variation. Multiple inputs should be considered while
computing the outcome of the fuzzy control rules.
If-THEN rules are related to temperature inputs that

change at a different rate. Every row and every col-
umn contain a 3D variable known as control output,
which is related to the THEN component of IF-THEN
logic. The heater’s speed must be fast to swiftly
boost its temperature if the present temperature and
temperature change rate are low. This is shown by the
IF-THEN rule, which states that rapid production is
required under conditions of low temperature and low
rate of change. Several further rules adhere to a simi-
lar manner, which is remarkably near to the intuition
of a human. This air conditioner model generates a
complete of 9 rules. For functions requiring superior
power accuracy, input and output should be separated
into smaller portions, and further fuzzy rules should
be employed.

B. Dataset

The dataset used in this research comprises primary data
collected from multiple industrial companies across various
cities. It includes several key parameters such as location,
humidity levels, stock availability, stock replacements, stock
mapping, availability status, and temperature recorded on
different dates ranging from September 13, 2022, to January
1, 2023. This dataset provides comprehensive insights into
inventory management dynamics and environmental condi-
tions within industrial settings over a specific time, enabling
detailed analysis and informed decision-making for opera-

tional optimization and resource allocation strategies.
A short description of the dataset is given below in Table

2.
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Date Stock Availability | Temperature | Location Humidity Availability | Replacement

Mapping Stock

574 In Stock 10.750323 Sri 43.751466 | 1 0
14/11/2022 Ganganagar

710 In Stock 14.186138 Phusro 35.124759 | 1 0
14/11/2022

747 In Stock 27.714775 Amroha 31.589134 | 1 0
21/06/2023

107 In Stock 16.559139 Bhagalpur 55.267764 | 1 0
05/07/2023

850 In Stock 26.837352 Miryalaguda | 65.800981 1 0
29/09/2022

773 In Stock 30.234488 Madhyam- | 61.355038 | 1 1
12/10/2022 gram

424 Out of | 23.624181 Anantapur 67.637464 | O 1
09/05/2023 Stock

780 In Stock 36.344117 Chandigarh | 70.321105 | 1 1
01/11/2022

368 In Stock 11.346887 Akola 49.537306 | 1 0
22/05/2023

666 Out of | 24.861072 Saharsa 56.221820 | 0 0
12/10/2022 Stock
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TABLE II. Long Table Example robust framework for research and practical implementation.
Table 3 shows system configuration for implementing the
Component Specification research.
IOT devices Various  sensors .(e..g., D. Proposed Methodology
temperature, humidity)

connected via MQTT or
HTTP protocols

Edge devices Raspberry Pi 4B with 4GB
RAM, running Raspbian

0OS

Cloud Platform AWS 10T Core for data
ingestion and device man-

agement

Amazon S3 for scalable
and durable object storage

Data Storage

Data Processing Python 3.8 with pandas,
numpy for data manipula-

tion and analysis

Machine Learning TensorFlow or PyTorch
for developing predictive

models

Communication Protocol MQTT (Message Queuing
Telemetry Transport) for
efficient device communi-

cation

Visualization Tools Matplotlib,  Plotly  for
data  visualization and

dashboard creation

Analytics & Monitoring Elasticsearch, Kibana for

real-time analytics and
monitoring
Security SSL/TLS for secure com-
munication between de-
vices and the cloud
C. Tool Used

Python serves as a powerful tool for researching and im-
plementing strategies aimed at optimizing resource alloca-
tion in IoT systems for improved inventory management.
Python’s extensive libraries for data analysis and machine
learning, such as pandas, numpy, and scikit-learn, facilitate
efficient data processing, modelling, and evaluation. For [oT
applications, Python’s flexibility allows seamless integration
with sensor data streams and cloud platforms, enabling real-
time analytics and decision-making. Python’s simplicity
and readability further enhance collaboration and code
reproducibility in research projects focused on enhancing
resource allocation efficiency within IoT-driven inventory
management systems. This system configuration leverages
Python along with appropriate hardware and cloud infras-
tructure to enable effective resource allocation optimization
within IoT-based inventory management systems. The in-
tegration of IoT devices, edge computing, cloud services,
and data analytics tools in this setup provides a scalable and

The following is a detailed explanation of each approach
used in the proposed methodology, along with a flowchart
depicting the current state of the methodology in Figure 5.

I Real time inventory monitoring l_. B){VU;T‘\?E

Data Collection

Fuzzy Logic

I Condition Monitoring and Evaluation I

l—+—\

Creation Time (Provided
by the Manufacturer)

Proper Resource
Allocation for
Inventory
Management

Order Quantity

1

1

1

1

1

1

1

1

1

1

1

1

1

1 4;|_l
1

1
H Replacement Time
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Barcode Scanners

Barcode Scanners

_| Stock Mapping |—F| |
—| Location H Global Positioning System |
'—'i Temperature H Infrared Temperature Sensor |

—| Humidity I—Pl
Availability _’l

| Data Pre-Processing |

e Random Forest
e Decision Tree = (Ensemble)
e Regression Models

:

e Accuracy (%)
Figure 5. Proposed Methodology Flow diagram.

SAW Humidity Sensor

A

e Error Rate

Step 1:

Real-Time Inventory Monitoring: Sensors could be de-
ployed to monitor inventory levels in real-time. Sensors
could be placed on storage shelves, racks, or containers
to track the quantity of goods at any given time. This
information enables better resource allocation by providing
accurate insights into inventory availability and preventing
stockouts or overstocking by using WSN, which allows for
constant and precise data gathering, inventory monitoring,
management, and so on.

Step 2:
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Condition Monitoring: Sensors could monitor environmen-
tal conditions such as temperature, humidity, and light ex-
posure. This is particularly useful for perishable or sensitive
items. By continuously monitoring these conditions, re-
sources could be allocated appropriately to prevent spoilage,
damage, or quality issues, and in parallel, the continuous
monitoring and evaluation of the performance of the IoT-
enabled inventory management system is initialized by
using Fuzzy logic and its Fuzzy Rules. Use these insights
to refine the resource allocation strategies, make necessary
adjustments, and drive continuous improvement. To design
a fuzzy conditioning logic for the given scenario, it could
define three fuzzy sets: "Low”, "Medium”, and “High”.
The input variable would be the “value” of the item, and
the output variable would be the “’stock status” with three
linguistic terms: “Out of Stock”, "Few Items Left”, and ’In
Stock”. It could then define the membership functions and
rules as follows:

Membership Functions:

1) Input Variable: Value
o Low: Triangular membership function
with a range of (0, 130)
e Medium: Trapezoidal —membership
function with a range of (130, 150)
e High: Triangular membership function
with a range of (150 oo)
2) Output Variable: stock _status
e Out of Stock: Singleton membership
function at 0
e Few Items Left: Triangular member-
ship function with a range of (0, 1)
e In Stock: Singleton membership func-
tion at 1

Rules:

1) If the value is Low (value<132), then
stock _status is Out of Stock.

2) If the value is Medium (132>=value<=150),
then stock _status is Few Items Left.

3) If wvalue is High (value>150), then
stock _status is In Stock.

Using these membership functions and rules, the fuzzy
inference process could be applied to determine the stock
status based on the given value. If the value is less than 130,
the output would be “Item is Out of Stock.” If the value is
between 130 and 150, the output would be “Few Items Left,
Need More.” If the value is greater than or equal to 150,
the output would be “Item is In Stock.”

Step 3:

Data Analytics and Optimization by sensor data, when com-
bined with advanced analytics and optimization techniques,
could provide valuable insights for resource allocation.

Data analysis could identify inventory patterns and optimize
reorder points, safety stock levels, and order quantities.
Optimization algorithms could also be applied to balance
resource allocation across multiple locations or channels,
minimizing costs while meeting service-level objectives.

Step 4:

Demand Forecasting and Predictive Analytics: Utilize the
collected sensor data along with historical data to enhance
demand forecasting accuracy. Apply predictive analytics
models to forecast future demand, considering factors such
as seasonality, trends, promotions, and external events.
These forecasts aid in resource allocation decisions.

Step 5:

After collecting data from the following sensors, the infor-
mation would be preprocessed by performing data cleaning
to handle missing values and outliers. Standardize or nor-
malize the input variables to ensure the variable should have
a similar scale.

Step 6:

The results would be evaluated using both training and
testing data. After that, utilize machine learning algorithms
ensembles, such as regression models, decision trees, ran-
dom forests, or neural networks, to build predictive models
based on the available data. Train these models using histor-
ical data and validate their performance using appropriate
evaluation metrics. Use the trained models to forecast future
demand based on input variables and market conditions.

e Regression Models (Linear Regression): In the
context of the methodology, linear regression can be
represented as:

V=80 +B1x1 +Poxs + ... + Buxy (1)

Where: y is the predicted value, xi, x, ..., X, are the
input features, and Sy, 81,52, ..., B, are the coefficients.

e Decision Trees: By applying conditions to charac-
teristics, a decision tree could produce predictions. It
is shown as a tree structure, with each internal node
representing a decision that is based on a character-
istic and every leaf node representing a measurement
of the prediction value.

¢ Random Forests: Random forests enhance prediction
accuracy by combining many decision trees. A forest
of trees is trained using a randomly selected subset of
input attributes and training data. When dealing with
regression issues, the final forecast is the average of
all the trees’ projections.

e Neural Networks (Feedforward Neural Net-
work):A feedforward neural network consists of in-
terconnected layers of neurons. In the context of the
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methodology, the output of a neuron in layer 1 could
be represented as:

ni-1
=0 [Z whal ! + b§] 2)
k=1

Where, zi. is the output of neuron j in layer /, o is the
activation function, wi.k is the weight between neuron

k in layer /-1 and neuron j in layer /, ai' is the
output of neuron k in layer /-1, and b; is the bias of

neuron j in layer /.
Step 7:

When it comes down to it, the accuracy, and a decreased
error rate that ensembles provide are the foundation for both
stock management and demand projections.

4. ResuLts AND DiscussioN

In this section, the study presents and discusses the follow-
ing key aspects: Firstly, the approach to data representation
is outlined, highlighting how data is structured and utilized
within the framework. Secondly, evaluation metrics focus-
ing on accuracy, root mean square error, mean square error
and mean absolute error are applied to assess performance.
Finally, the results derived from these metrics are analyzed
and discussed to provide insights into the effectiveness and
reliability of the proposed methodology.

A. Data Representation

Here, data is visualized, which is collected from various
cities with the help of WSN to calculate temperature,
humidity, and stock mapping, spanning different dates of
allocations where inventory data is located. This data is
utilized for testing and training the proposed real-time
inventory monitoring system. In this section, data are plotted
in the graphs below, which show the temperature, humidity,
and mapping of stock at allocated resources in different
cities. Figure 6(a) displays the data visualization concerning
temperature over time, and it encompasses data collected
for both years 2022 and 2023. The minimum temperature
recorded is 17.5 degrees Celsius, while the highest tempera-
ture reaches 32.5 degrees Celsius. Figure 6(b) illustrates the
humidity levels in various cities, represented in percentages,
for the years 2022 and 2023. Figure 6(c) displays the stock
mapping data for different shops located in the respec-
tive cities. (a) displays the data’s visualization concerning
temperature over time, and it encompasses data collected

for both years 2022 and 2023. The minimum temperature
recorded is 17.5 degrees Celsius, while the highest tempera-
ture reaches 32.5 degrees Celsius. Figure 6(b) illustrates the
humidity levels in various cities, represented in percentages,
for the years 2022 and 2023. Figure 6(c) displays the stock
mapping data for different shops located in the respective
cities.

Temperature Over Time

Temperature (*C)
>
°

20.0

175

2022-09 2022-11 2023-01 2023-03 2023-05 2023-07 2023-09
Date

()

Humidity Over Time

Humidity (%)
o o
8 2

8

4

202209 2022-11 2023-01 2023-03 2023-05 2023-07 2023-09
Date

(b)

Stock Mapping Over Time

Stock Mappinge

2022-09 2022-11 2023-01 2023-03 2023-05 2023-07 2023-09
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Figure 6. Data Visualization
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B. Evaluation Metrics

In this section, evaluation metrics are defined, which are
utilized in this study to showcase the results and assess the
accuracy of the proposed system. The metrics employed in
this study include RMSE, MAE, and MSE.

Accuracy

Accuracy can be expressed in terms of true positives

(TP), false positives (FP), true negatives (TN), and

false negatives (FN) using the following formula:
TP+TN

TP+FP+TN+FN

Accuracy =

3

Where:

o True Positives: The number of correctly pre-
dicted positive instances (instances the model
correctly classified as positive).

o False Positives: The number of incorrectly pre-
dicted positive instances (instances the model
incorrectly classified as positive when the num-
bers are negative).

o True Negatives: The number of correctly pre-
dicted negative instances (instances the model
correctly classified as negative).

o False Negatives: The number of incorrectly pre-
dicted negative instances (instances the model
incorrectly classified as negative when the num-
bers are positive).

Accuracy measures how well the model correctly pre-
dicts both positive and negative instances compared to
the total number of instances. It provides an overall
assessment of the model’s performance in terms of
classification correctness.

Root Mean Squared Error

In statistics, the RMSE is a measure of the errors in a
set of data points or the precision with which a model
makes predictions. RMSE is calculated as follows:
take the squared difference between each predicted
value (P) and its corresponding actual (true) value
(T), calculate the mean (average) of these squared
differences, and finally, take the square root of the
mean squared differences to get the RMSE.
Mathematically, RMSE is expressed as:

S (P =T
n

RMSE = “
Where P; represents the predicted value for the i
data point, 7; represents the true (actual) value for
the i’ data point, and 7 is the total number of data
points.

Mean Absolute Error

MAE is a statistical metric used to assess the accuracy
of a predictive model or to measure the average
magnitude of errors in a set of predictions. MAE is

calculated as follows: for each data point, calculate
the absolute difference between the predicted value

(P) and the true value (T), sum up these absolute
differences for all data points, and finally, divide the
sum by the total number of data points (n) to calculate
the MAE.

Mathematically, MAE is expressed as:

2y [Py = T
n

MAE = Q)
Where P; represents the predicted value for the i
data point, 7; represents the true (actual) value for
the i data point, and n is the total number of data
points.

Mean Squared Error

The mean squared error (MSE) is a widely used statis-
tic for gauging the accuracy of a prediction model or
for comparing expected and actual values in a dataset.
To get the mean squared error (MSE), square each
data point’s predicted value (P) and the actual value
(T), sum all of these squared discrepancies, and then
divide by the overall number of data points (n).
Mathematically, MSE is expressed as:

XL Pi-T)
n

MSE 6)
Where P; represents the predicted value for the i
data point, 7; represents the true (actual) value for
the i data point, and n is the total number of data
points.
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C. Results

The results were generated through the application of
ensemble techniques and the visualization of confusion
matrices. Multiple methods, including Decision Trees, Ran-
dom Forests, a Regression Model, and an ensemble model
that combines Decision Trees, Random Forests, and the
Regression Model, are employed to train and classify the
data. Notably, the ensemble model demonstrated superior
performance, yielding significantly improved accuracy in
comparison to the individual methods. This ensemble ap-
proach leveraged the strengths of each constituent model,
leading to enhanced predictive outcomes and underscoring
the efficacy of combining diverse machine-learning tech-
niques to achieve superior results in the classification task.
In Figure 7, the confusion matrix for a decision tree model
is presented, encompassing key values: TP, FP, TN, and FN,
with respective values of 929, 70, 946, and 55. Using these
values, the model’s accuracy is calculated via the formula of
accuracy (Eq. 1), resulting in an accuracy score of 93.75%.
This score signifies the model’s ability to correctly classify
instances, with approximately 93.75% of predictions being
accurate. While precision is of the utmost importance, it
is also vital to keep the project’s objectives in mind. With
a Recall of 0.94, a Precision of 0.92, and an F1 Score of
0.92, a thorough evaluation is in line with the needs of the
project.

Confusion Matrix

Actual
Actual 0

Actual 1

\
Predicted 0

Predicted 1

Predicted

Figure 7. Confusion Matrix for Decision Tree

Figure 8 presents the confusion matrix for a random
forest model. This matrix includes crucial values such as
TP, FP, TN, and FN, each of which has a value of 942, 57,
934, and 67. The accuracy of the model was determined
by using the accuracy formula (Eq. 1) for these data, and
the resultant score for accuracy was 93.8%. The model’s
ability to recognize important examples is highlighted by a
recall score of 0.93, and the F1 score of 0.93 indicates a
good harmony between precision and recall. An additional
indicator of the model’s success in correctly identifying
positive situations is its precision score of 0.94.

Confusion Matrix

Actual
Actual 0

Actual 1

predicted 1

predicted 0

Predicted

Figure 8. Confusion Matrix for Random Forest

Figure 9 illustrates the confusion matrix associated with
a regression model containing essential metrics, including
TP, FP, TN, and FN, with respective counts of 942, 57,
934, and 67. To determine the model’s performance, applied
the accuracy formula (Eq. 3) to these data, yielding an
accuracy score of 93.8%. With a 93.8% success rate, the
model is quite good at correctly classifying data. To put it
another way, the model was successful in making accurate
predictions in roughly 93.8% of cases. The levels of recall
(0.93), F1 score (0.93), and precision (0.94),

Confusion Matrix

Actual
Actual 0

Actual 1

Predicted 0 Predicted 1

Predicted

Figure 9. Confusion Matrix for Regression Model

Figure 10 shows the parameter values for several dif-
ferent approaches, such as the Decision Tree, the Rain
Forest, and the Regression Model. The confusion matrix
for the Decision Tree model shows a remarkable Accuracy
of 93.7%, Recall of 0.94, F1 Score of 0.92, and Precision
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of 0.92. Like the Random Forest model, the Rain Forest
model has a high level of accuracy (93.8%) due to its
strong Recall (0.93), F1 Score (0.93), and Precision (0.94).
The Regression Model achieves similar levels of accuracy
(93.8%) with values of 0.93 for Recall, 0.93 for F1 Score,
and 0.94 for Precision in the corresponding confusion
matrix. Results show that these models perform admirably
in classification tasks, with respectable values for important
metrics like Recall, F1 Score, and Precision.

0.945
0.94 0.94 0.94
0.94 0.9370-9380.938

0.935
0.93 0.93 0.93 0.93

L, 093
2
= 0.925
> 0.92 0.92

092

091

Accuracy Precision F1 Score Recall
Parameters

= Decision Tree @ Random Forest Regression Model

Figure 10. Comparison of Parameter Values for Different Methods

Figure 11 is an illustration of the confusion matrix that
relates to the ensemble model (decision tree, random forest,
and regression model). This matrix contains crucial metrics
such as TP, FP, TN, and FN, and their corresponding counts
are 934, 65, 941, and 60, respectively. By putting these
numbers into the accuracy formula (Eq. 3), determine that
the model has an accuracy of 93.75 %. With a prediction
accuracy of almost 93.75%, this score demonstrates the
model’s ability to properly label events. The remarkable
recall (0.93), F1 score (0.93), and precision (0.93) numbers
also attest to this success. When compared to using the
individual strategies alone, the ensemble model was shown
to be much more effective. By making use of the unique
features of each model in the ensemble, performance on
the classification job was much improved, demonstrating
the power of mixing different types of machine learning.

Confusion Matrix

Actual
Actual 0

Actual 1
|

Predicted 0 Predicted 1

Predicted

Figure 11. Confusion Matrix for Ensemble Model

Following the computation of these results further as-
sessed the model’s performance by calculating error rates,
specifically utilizing RMSE, MAE, and MSE. These error
metrics were determined using the formulations specified in
Eq. 4, Eq. 5, and Eq. 6, respectively. The resulting values for
RMSE, MAE, and MSE are presented in Table 4, offering a
comprehensive overview of the model’s predictive accuracy
and deviation from actual values. Additionally, Figure 12
graphically illustrates these error metrics, providing a visual
representation of how well the model aligns with the
observed data, thus facilitating a deeper understanding of
its overall performance.

Parameters Values
RMSE 0.25
MSE 0.625
MAE 0.625
Accuracy 0.937
Precision 0.93
Recall 0.93
F1-Score 0.93
! 0937 0.93 0.93 093
0.9
0.8
o 0.625 0.625
0.6
0.5
0.4
0.3 0.25
0.2
0.1 I
0 RMSE MSE MAE Accuracy Precision Recall F1-Score
® Values 0.25 0.625 0.625 0.937 0.93 0.93 0.93

Figure 12. Error Values
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5. ConcLrusioN AND FuTure Work

Methods for improving inventory management through op-
timal use of IoT resources are the focus of this research. In
this paper, an inventory management system is developed
that uses the IoT and WSN to optimize resource allocation.
The dataset that is considered for this article is the main
dataset, which was collected from various locations. With
the assistance of WSN, temperature, humidity, and stock
of mapping of the location where data is allocated are
calculated. The collected data is preprocessed, and then the
preprocessed data is divided into training and testing data.
Further comes the time to classify the data and train it with
the use of machine learning models such as decision trees,
random forests, regression models, and ensemble models
(combinations of decision trees, regression models, and
random forests). Accuracy, MAE, MSE, and RSME are
the metrics used to evaluate the performance of the model.
The results of the experiment demonstrate that the values
of RMSE, MAE, MSE, and accuracy are correspondingly
0.25, 0.0625, and 0.625. Also, the obtained accuracy of the
suggested model is 93.75%. Future work for this research
could focus on expanding the IoT-based inventory manage-
ment system to handle larger and more complex datasets
while exploring the integration of real-time supply chain
optimization algorithms to further enhance operational ef-
ficiency. Further, advancements in sensor technology and
data fusion techniques could be leveraged to enhance the
quality and granularity of data collected from IoT devices
and WSNs. By incorporating additional sensor modalities
and optimizing data fusion algorithms, future iterations of
the inventory management system could provide more com-
prehensive insights into inventory status and environmental
conditions, leading to more informed resource allocation
decisions.
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