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Abstract: The Internet of Things (IoT) has revolutionized numerous aspects of our lives, offering many applications that enhance
convenience and comfort. However, alongside its significant benefits, IoT introduces several research challenges, with security emerging
as a primary concern. Given the sensitive nature of the information exchanged within IoT environments, ensuring robust security
measures is imperative. One prominent threat in IoT environments is the potential for malicious attacks, which can exploit vulnerabilities
and disrupt network operations. Among these threats, blackhole attacks pose a particularly concerning risk, as they involve malicious
entities dropping all incoming packets, disrupting routing operations, and impeding communication. To mitigate the risks posed by
blackhole attacks and enhance the security of IoT networks, a novel approach known as the K-means clustering-based Trust (KmeansT)
evaluation mechanism has been proposed. This innovative method employs a multifaceted trust evaluation process, incorporating both
direct observations and recommendations from other network entities. By leveraging the K-means clustering algorithm, the proposed
mechanism enhances the effectiveness of trust evaluation, enabling a more accurate assessment of node reliability and integrity. One of
the key strengths of the KmeansT approach lies in its ability to identify and mitigate blackhole attacks within the IoT environment
effectively. Through rigorous mathematical modeling and simulation studies, the efficacy of the proposed mechanism in detecting and
neutralizing blackhole threats is demonstrated. Simulation results are analyzed comprehensively, with performance metrics compared
against existing models to assess the effectiveness of the KmeansT approach. By evaluating constraints such as end-to-end delay, packet
delivery, and detection ratio, the superiority of the anticipated mechanism in safeguarding IoT networks against blackhole attacks is
underscored.
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1. Introduction
In the modern era, people expect efficient, robust, and

sophisticated operational services. Consequently, informa-
tion and communication technology plays a major role
in satisfying consumer needs. The Internet of Things is
one such protruding and trending technology that helps all
aspects of human life. It enhances the values of the business,
upgrades customer services, and develops decision-making
[1]. It is defined as the arrangement of interrelated digital
devices, electrical and mechanical devices, computing de-
vices, network devices, people, animals, and surrounding
objects those are having with unique identification and are
capable of transmitting information over a communication
network. More simply it is defined as the collection of
sensor-embedded devices that can capable to communicate
with each other. Beyond that those devices can sense the
outside environment and do some action based on the data
being collected from the external environment [2].

Consequently, IoT offers various applications across var-
ious fields including smart agriculture, smart home, smart
transport, smart city, smart healthcare, Industrial IoT, smart
personal assistance, etc. [3], [4]. Therefore, the applications
range from personal use to industry. More importantly,
IoT devices collect real-time data and those data can be
processed with the help of Big data analytics so that it is
helpful in decision making. In addition to that, Artificial
Intelligence also takes part in the working environment of
IoT to provide a better user experience. The preceding two
extents have experienced a sturdy rise in the fabrication and
deployment of sensing-and connectivity-enabled electronic
devices, swapping “regular” physical objects. The ensuing
Internet of Things (IoT) will soon become obligatory for
many application domains. Smart objects are unremittingly
cohesive within factories, cities, buildings, health institu-
tions, and private homes. Nearly 30 years after the birth
of IoT, society is confronted with striking trials regarding
IoT security. Due to the interconnectivity and ubiquitous
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use of IoT devices, cyberattacks have extensive impacts on
multiple stakeholders. Ancient events spectacle that the IoT
domain holds various susceptibilities, oppressed to generate
physical, economic, and health damage. Despite many of
these threats, manufacturers scuffle to secure IoT devices
properly [5].

Though it offers various applications, the significant
characteristics such as its resource-constrained nature in-
cluding limited memory, limited battery power, limited pro-
cessing power, limited bandwidth, open and shared wireless
environment, lack of physical protection, self-organized
nature, etc. lead to various research avenues. Therefore,
the following open issues are getting attention from the
research community. The issues are security, privacy, trans-
port protocol, standardization issues, mobility issues, data
integrity, authentication, scalability, energy management,
and Quality of Services. Among the research challenges,
providing security in IoT is a challenging task hence it is
getting much attention from the researchers. The reason is
limited processing, storage, and battery capabilities of IoT
open a gateway for various attacks. More specifically, the
heterogeneous nature of IoT devices creates interoperability
problems that lead to security violations. The entire security
issues of IoT can be classified into three major categories.
Besides, the security violations happened in almost all the
layers of the IoT environment. The following Figure 1
depicts the security issues of IoT [6], [7], [8].

Figure 1. Security Issues at Various Layers

The security issues are broadly ordered into three major
sorts: high-level, mid-level, and low-level. The extraordi-
nary retreat issues occur in the application layer, mid-
level security issues arise in both transport and network
layers and low-level security issues occur in both network
and transport layers. Therefore, to address these attacks
several security mechanisms have been proposed by various
researchers. Many algorithms like key management, intru-
sion detection systems, blockchain technology, symmetric
and asymmetric cryptography algorithms, hash functions,
etc. are effective in providing and ensuring security in the
network layer. However, they might not apply to resource-
constrained IoT devices. Applying all those algorithms in
resource-constrained IoT devices leads to security violations
[6], [7], [8].

The proposed research work is focusing on network
layer issues. Issues are raised in the form of attacks and

it is defined as an assaulting the system or network en-
vironment. Session establishment, RPL routing protocol,
insecure neighbor discovery, duplication or replay attack,
wormhole attack, blackhole attack, sinkhole attack, Sybil at-
tack, and buffer reservation attacks affect the network layer
commonly. The proposed research work focuses on black
hole attacks. It is a kind of attack that affects the normal
routing operation by holding all the incoming packets that
are dedicated to forward to others and by the way those
nodes are trying to save their energy levels. The result is
the overall performance of the network becomes degraded.
The network layer’s main concern is routing. In an IoT
environment, data or control packets are transmitted from
one point to another point with the help of routing protocols.
This operation is called routing. Such routing operations are
affected by blackhole attacks. Therefore, the entire network
operations might be in trouble [9].

To ensure security the following security requirements
must be considered such as confidentiality, authentication,
authorization, access control, and non-repudiation among
requirements authentication is considered as a primary re-
quirement in the security aspects of the IoT environment as
it safeguards the preliminary level of security. However, in
the IoT environment ensuring authentication is an intricate
task as IoT has diverse devices, cross-platform capabilities,
and resource-constrained nature. Therefore, the IoT environ-
ment is expecting proper authentication along with a secure
mechanism to protect the IoT environment [10].

A. Research Objectives and Contribution
Ensuring security within the realm of IoT presents a

noteworthy challenge, garnering considerable attention from
researchers. This augmented motivation stems from the
inherent limitations in IoT devices’ processing, storage,
and battery capabilities, which serve as vulnerabilities sus-
ceptible to various attacks. The diverse nature of these
devices, in particular, exacerbates interoperability issues,
thereby increasing the risk of security breaches. Among
these threats, the black hole attack stands out as partic-
ularly concerning, habitually perpetrated by compromised
internal nodes. We propose the K-means clustering-based
trust (KmeansT) evaluation mechanism to address this chal-
lenge. This approach addresses the problem by leveraging
trust management principles and the K-means clustering
algorithm to meritoriously detect and neutralize black hole
attacks.

Below is the outline for the remainder of the paper:
Section 2 is about contextual information and includes the
k-means clustering algorithm, the influence of a blackhole
occurrence on the RPL routing protocol, and an explanation
of how RPL works; Section 3 delves into SLR; Section 4
describes the proposed model; Section 5 shows the proposed
algorithm; Section 6 is about outcomes and discussion;
section7 is the inference and the last section is limitations
and future research directions.
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2. Background
The proposed algorithm makes use of the K-means

clustering algorithm to ascertain the black hole attack over
the RPL routing protocol. The ensuing part discusses the
k-means clustering algorithm.

A. K-Means Clustering Algorithm
It is the easiest and has less computational overhead

[11]. This simple algorithm is used to categorize the data
into K clusters. These clusters are depicted by the centroids
[12]. The recognized K-means group is conventional of
data points that are adjoining to the convinced centroid
and left since all additional centroids. This algorithm takes
approximately deviations. The popularly recycled algorithm
is Lloyd’s algorithm. In this algorithm, the ‘k’ amount of
bunches have been designated as input with a collection of
information points [13].

The procedure starts by starting K-cluster centers. These
centers were chosen randomly or based on some heuristic
procedure [14]. The center is called the prototype point
(centroids). The data points after the data set have been
allotted to individual clusters based on the closest prototype
point. Then, the mean data points are calculated by taking
the average of the data point’s coordinate values for separate
collection. The mean arguments comprise a new set of
prototype points. Again, every data point is allotted to
a cluster of its closest prototype points. This phase of
the group is conclusive clustering results. The Euclidean
distance has been used for proximity measure in K-means.
This algorithm consists of many advantages that variety
it very familiar. The significant ones are simplicity and
easy implementation. Because of the direct difficulty, this
algorithm mechanism K-Means is a well-known clustering
method. It is an unsupervised ML technique to categorize
the contribution data groups hooked on numerous modules
constructed on Euclidean distance. It remains an algorithm
and initiates with the original model opinions [15]. The
Euclidean distance is defined as follows:

d(x, y) =
n∑

i=1

(xi − yi)2 (1)

B. The impact of Blackhole over RPL
As discussed in the introduction section, the routing

protocols could be used to route the information from one
place to another place. In IoT many routing protocols have
been used, however, Routing Protocol for Low Power Lossy
Networks (RPL) is habitually employed in IoT environ-
ments. The suggested model incorporates the RPL routing
protocol, as explained in detail in reference [16]. The black
hole attack is one kind of attack that harms the routing
operation by dropping all the incoming packets that are
dedicated to forward to others. Figure 2 denotes a network
structure with no blackhole attack and Figure 3 denotes a
network structure with blackhole attack.

In an RPL-based IoT environment, initially, the devices

Figure 2. No Blackhole attack with RPL

are authenticated and trusted hence DODAG construction
has been done without any difficulty. Over a while, the be-
havior of devices might be changed and perform malicious
activities like black hole attacks. Figure 3 represents the
typical RPL network with a black hole attack respectively.
In Figure 3, an IoT environment consists of 10 nodes along
with the origin node. Here, node/device 3 is assumed a
black hole device. Hence, it publicizes the situation that
is taking the direct pathway to reach the root device R.
Therefore, device 7 assumes that device 3 has a path to the
root node and forwards its packet to that node. As device 3

Figure 3. Blackhole attack with RPL
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is a block hole node, it will not forward the packet to root
node R, in addition, it reduces all the inward packages that
are envisioned to onward. By the way, a black hole attack
is executed in the IoBT network. The subsequent section
will delve into a systematic literature review discussion.

3. Review Of Literature
At present IoT is a hot research topic because of its

sustainable development and adoption. The features of IoT
lead to various applications and this also opens a gateway
for various research avenues in terms of scalability, energy
management, security, privacy, interoperability, etc. The
security of IoT is getting attention more compared with
other research issues as it is threatening the entire operation
of the IoT environment. The following section will discuss
some of the existing research that is related to security.
Several methods and mechanisms have been proposed by
various researchers here some of the notable works are
pointed out.

In [17], the authors introduced SRAP, a Routing Pro-
tocol for Low-Power and Lossy Networks (RPL)-based
solution tailored for non-homogeneous IoT environments.
SRAP is designed to enhance productivity while addressing
scalability concerns by minimizing overhead. One notable
feature is its utilization of Destination Advertisement Ob-
jects (DAO) in an encrypted manner, effectively thwarting
potential threats posed by malicious devices within the
network.

In [18], the authors proposed a security model grounded
in the Rivest Shamir Adleman (RSA) public key cryp-
tography algorithm. This model is specifically engineered
to fortify RPL-based routing protocols by ensuring confi-
dentiality, integrity, and authentication. By leveraging RSA
encryption, the model safeguards communication channels
against unauthorized access and tampering, thereby uphold-
ing the essential security requirements of IoT networks.

In [19], the authors propose a model to combat black-
hole attacks utilizing an exponential smoothing algorithm.
This innovative approach aims to address the topological
disruptions caused by blackhole nodes by calculating packet
delivery times from the root node. Leveraging this data,
the algorithm makes informed decisions to mitigate black-
hole attacks, effectively safeguarding network integrity and
ensuring uninterrupted communication flow within the IoT
environment.

In [20], the authors proposed a robust security model
grounded in Elliptic Curve Diffie-Hellman (ECDH) cryp-
tography, which ensures multiple security properties essen-
tial for IoT environments. These properties include con-
fidentiality, authentication, ambiguity resolution, location
privacy preservation, and data packet forwarding security.
By leveraging ECDH cryptography, the model provides a
comprehensive framework for safeguarding IoT networks
against various security threats while maintaining privacy
and integrity.

In [21], the authors introduced a trust prototype based
on fuzzy logic, aiming to combat blackhole attacks by
establishing trusted routes within IoT networks. This model
utilizes fuzzy logic to evaluate trust levels, facilitating
the formation of reliable routes that mitigate the risks
posed by malicious entities. By leveraging fuzzy logic, the
model adapts to dynamic network conditions and effectively
identifies trustworthy paths, thereby enhancing the security
and reliability of IoT communication.

Addressing the challenges posed by gray hole and
warm hole attacks, [22] presents a model that focuses on
trust-based mechanisms built on forwarding and ranking
checks. By evaluating the trustworthiness of nodes based on
their behavior in packet forwarding, this model effectively
identifies and mitigates the risks associated with these types
of attacks, ensuring the integrity and reliability of IoT
networks.

In [23], the authors proposed a trust model grounded
in energy considerations, leveraging local trust design and
parent node feedback to evaluate node trustworthiness. By
assessing nodes based on their energy usage and collecting
opinions from parent nodes, this model provides a reliable
framework for establishing trust relationships within IoT
networks, thereby enhancing security and reliability.

In [24], a lightweight cuckoo filter-based security mech-
anism is proposed to address blackhole attacks. This model
employs secure rank calculation, infrastructure establish-
ment, and node registration stages to evaluate node authen-
ticity and permit only authenticated nodes to participate in
network operations, thereby mitigating the risks associated
with blackhole attacks.

Mitigating rank and Sybil attacks, [25] presents a trust
model that evaluates the dependability and reliability of
nodes. By incorporating positive acknowledgments and em-
ploying a fuzzy threshold mechanism to broadcast trust val-
ues across networks, the aforementioned model effectively
pinpoints and quarantines malicious nodes, enhancing the
security and reliability of IoT networks.

In [26], a model leveraging context awareness is pro-
posed to address Sybil and rank assaults in RPL-based IoT
networks. By assessing the reliability of both child and
parent nodes and computing direct and indirect trust values
based on various parameters, including energy, rank value,
hop count, and node behavior, this model establishes trust-
worthy communication paths, thereby enhancing network
security.

In [27], resource-constrained lightweight symmetric ci-
phers are used. Popular Arduino and Raspberry Pi were
tested. They cast off an ATMEGA328p microcontroller to
ripen 39 block ciphers for different block and key sizes
and tested their encryption and decryption performance,
cost, and energy efficacy also added 80 second-round NIST
stream and block cipher algorithms to the previously studied
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ciphers. This extensive study scrutinized dormancy and
energy adeptness for all ciphers with alike block and key
sizes.

In [28], the authors compare city and highway IoV
network speeds using random waypoint and Manhattan
grid network mobility models for static and mobile nodes.
These findings provide light on dynamic IoV networks’
stability, scalability, and reliability and suggest strategies to
improve hybrid objective functions with Quality of Service
for scalable networks.

In [29], the author covered the DIS flooding attack
debated in this paper portentous that swelling the numeral
of attacker nodes has an evident negative effect on end-to-
end delay, packet detection ratio, and power consumption.

Moving forward, the authors in [30], scrutinize routing
attacks and suggest mitigation in RPL-based IoT networks.
It presents a new classification framework that links RPL
assaults to their response methods, improving security strat-
egy knowledge and organization.

Authors swell cases with copious sinks and attackers
in [31] to improve network attack detection. Overall, the
research sheds clarity on how different assaults affect RPL
setups and proposes network security improvements.

In [32], Lightweight Cryptography (LWC) is endorsed
for resource-limited IoT devices. Lightweight cryptography
rallies IoT network security. Security liabilities in IoT
systems are premeditated. It observes lightweight block,
stream, hash, and Elliptic Curve Cryptography.

Authors in [33], boons a safe visual cryptography-based
mutual authentication scheme. The etiquette uses visual
cryptography to encrypt and decrypt secret images and
tickets for mutual authentication. Accessing cloud amenities
entails a ticket from the authentication server. Authentica-
tion practices three mutual secret keys for encryption and
decryption.

Authors in [34], offered an IoT archetype, EGCrypto,
that is reliable and efficient. Elliptic Galois cryptography
and matrix XOR steganography protect EGCrypto. Self-
adaptive differential evolution, fitness and diversity ranking,
zonal control-specific development, and adaptive mutation
enhance performance. Optimizing EGCrypto hyperparam-
eters improves efficiency and efficacy. EGCrypto’s elliptic
Galois cryptography safeguards IoT data. In picture cover
blocks, optimization furs encrypted data. This technique de-
crypts and recovers IoT data at the receiving end, ensuring
safe transfer.

Finally, [35] suggests a security mechanism based on
blockchain technology and machine learning algorithms
for intrusion detection, aiming to eliminate internal attacks
within IoT environments. By leveraging the immutability
and transparency of blockchain and the analytical capa-

bilities of machine learning, this model offers a robust
framework for detecting and mitigating internal security
threats, thereby enhancing the overall security posture of
IoT networks.

A. Research Gap:
Despite the success of the security methods presented in

previous discussions, there remains a need for more effec-
tive mechanisms due to their limitations. Most of the secu-
rity techniques proposed are cryptographic, and they may be
unsuitable for Internet of Things devices due to the resource
limitation constraint. In addition, they mostly concentrate on
generic security concerns rather than focusing on specific
attack types. The prevalent routing safekeeping methods and
the innovative trust organization proposed in this research
illustrate the importance of both the fundamentals and the
likelihood of this proposed work in addressing the above-
described concerns. The next component of this research
illuminates the proposed model.

4. Proposed Model: K-Means Clustering Algorithm-Based
Trust (KmeansT) Evaluation
The proposed model aims to identify and eliminate black

hole attacks. To do this, the proposed model follows the
underlying assumptions.

A. Assumptions:
• The network environment comprises N number of IoT

nodes and they can communicate with each other
to do network activities. Then, they can be able to
communicate only within their communication range.

• All the partaking devices in the environment are
resource-constrained in the amount of energy, mem-
ory, and processing capabilities.

• The network entails fewer amount of blackhole nodes
to assess the detection capabilities of the proposed
model.

• The black hole nodes are called adversaries or com-
promised nodes and they will not forward the packets
to other nodes and they will drop all the incoming
packets by the way they try to save their energy.

• Every node maintains a trust table where all the
confidence-related evidence of the participating nodes
can be stored.

• The proposed model will execute over some time or
when the performance of the model decreases.

The following Table I illustrates the schema layout of a
table along with sample data.

TABLE I. Trust Table

Node’s ID DT RT Behaviour
N1 0.1 0.3 partially trusted
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Nodes’ID - Nodes Identification
DT – Direct Trust
RT- Recommendation Trust
Behavior - Blackhole node or Genuine Node

B. Direct Trust
Over some time, the performance of the network may

be degraded. In that situation, every node in a situation
assesses the trustworthiness of its communicating nodes by
executing a recommendation-based trust evaluation model.
This model consists of the following phases:

• Direct trust evaluation

• Indirect trust evaluation

Classification of blackhole nodes using the K-means
clustering algorithm

C. Direct Trust Evaluation
A node Ai wants to estimate the direct trust of node A j

with the help of the following two factors such as packet
forwarding behavior and confidence level. The packet for-
warding behavior represents how a node can be able to
correctly forward the packets to the destination. If the node
becomes an adversary node or black hole node, it will
not forward the packets as it tries to save their energy.
Within this consideration, the following equation is used
to calculate packet forwarding behavior.

D. Packet Forwarding Behaviour
Node Ai wants to calculate the packet forwarding be-

havior of node A j over some time. The following equation
2 is used to calculate packet forwarding behavior.

PFBAi
A j(T ) =

P F(T )

P D(T ) + P F(T )
(2)

Where,

PFBAi
A j(T ) denotes the packet forwarding behavior of

node Ai concerning node A j.

P F(T ) denoted the packet forwarding ratio of node
Ai.

P D(T ) denotes the packet dropping ratio of node Ai.

T represents the time.

During the transmission, the blackhole nature of IoT
devices makes them selfish. In that case, those nodes will
not perform or be involved in any network operations. This
is important to analyze the behavior of the nodes over time.
If the mobile nodes perform well that can be represented by
the praise factor β otherwise it is not performing well can
be represented by the penalty factor α. Hence any network
activities α < β. Therefore, the transitory behavior of the
nodes is represented by Tr.

Whenever the forwarding behavior of the node de-
creases, the Tr value will increase and otherwise the value

will be decreased. The following algorithm represents a
deviation from Tr.

If (PFBAi
A j(T − 1)) > PFBAi

A j(T ) then

Tr = Tr − 1 + α ∗ (PFBAi
A j(T − 1) − PFBAi

A j(T ))

If (PFBAi
A j(T − 1)) < PFBAi

A j(T ) then

Tr = Tr − 1 + β ∗ (PFBAi
A j(T − 1) − PFBAi

A j(T ))
else Tr = Tr − 1

Finally, packet forwarding behaviors will be calculated
based on the equation 3,

PFBAi
A j(T ) = PFBAi

A j(T ) ∗ Tr (3)

The other level of trust used in the proposed method is
called confidence level is represents the number of inter-
actions between the trustor and the trustee. The following
equations are used to indicate the confidence level of two
nodes. The interactions can be measured by acknowledg-
ment.

If (No. of interactions, high) then
Confidence level is high

Otherwise
Confidence level is low

The equation representation of the confident level trust
can be calculated based on the following equation 4.

CLAiA j (T ) =



If (No. of iterations ≥ Threshold value) then

Confidence level is high, assume CL=1

else If (No. of iterations = Threshold value) then

Confidence level is moderate, assume CL=0.5

else Confidence level is low, assume CL=0.3
(4)

Then, Direct trust will be calculated by combining
packet forwarding behavior and confidence level. The fol-
lowing equation 5 is used to calculate the direct trust value.

DT Ai
A j(T ) = µ1PFBAi

A j(T ) + µ2CLAiA j (T ) (5)

Where,

DT Ai
A j(T ) denotes the direct trust value of node Ai with

respect to node A j.

µ1 denoted the weighting factor and µ1+µ2 = 1

E. Recommendation Trust
Sometimes the direct trust values will not be ample

to assess the fidelity of the participating nodes. Hence,
secondary trust i.e. recommendations from other nodes will
also be considered. Direct trust values of a particular node
may change over time because of the significant features
of IoT nodes. In that case, recommendation trust will be
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useful. Besides, a node may not have direct experience
with other nodes, and an adversary node may act like a
genuine node for one node and perform malicious activities
for all other nodes in the network. Because of these reasons,
a recommendation trust will be calculated as each node
must have an interaction with other nodes during network
operations. The following equation 6 is used to calculate
recommendation trust.

RT Ai
A j(T ) =

n∑
i=1

(DT Ai
A j ∗ DT Ai

Am)/n (6)

where, i, j,m = 1, 2, 3, ....n, i , j and i , m

RT Ai
A j(T ) denotes the recommendation trust of node

Ai regarding node A j.

DT Ai
A j signifies the direct confidence of node Ai con-

cerning node Am.

The following section unfolds the mathematical and sim-
ulated approaches and methodology used in this study.

5. Proposed Algorithm
The following depicts the proposed algorithm’s working

principle:

A. Research Methodology
This experimental methodology demarcates the sequen-

tial procedures for assessing network performance, execut-
ing trust evaluation, establishing clusters based on trust
metrics, categorizing nodes, and revising trust status. The
objective of the method is to determine and categorize nodes
according to their reliability to reduce the potential vulner-
abilities caused by blackhole attacks in IoT environments.

B. Mathematical Example
The following Figure 4. Example Network consists of

eight nodes namely N1, N2, N3, N4, N5, N6, N7, N8
and N9 and these networks form an IoT environment.
Each node consists of direct and indirect trust values of
their neighboring nodes. All these nodes are in the same
communication range.

Assume node N1 is the evaluating node. It will assess
the trustworthiness of all other nodes in the network. The
trust table for node N1 is as follows. Initially, the behavioral
status is null. After executing the KmeansT algorithm, node
N1 can fill in the status. Hence, the initial status of the
blacklist column will be set to NULL. Every table will also
maintain its trust values in its table. Table II indicates the
trust table of node N1 concerning all other nodes in the
network.

Step1: Initially, the entire network is classified into two
categories such as cluster 1, cluster 2, and cluster 3 as per
the algorithm. Afterward, we select three nodes as centroids
or initial cluster heads for these clusters. Therefore, assume

Algorithm 1 Algorithm – Proposed Model
Input: Direct and Recommendation Trusts
Output: Classify nodes into Blackhole nodes, Trusted Nodes, and Partially
trusted nodes.

1: Begin:
2: if performance of the network is well then
3: Continue the network operations
4: else
5: for each node evaluates every other node do
6: Read Packet forwarding behavior and Confidence level.
7: Calculate: Direct Trust (DT)
8: Read direct trust of own and recommendation trust from other

nodes.
9: Calculate: Recommendation Trust (RT)

10: Update in the trust table.
11: end for
12: Read the Direct Trust value and Recommendation Trust values of

participating nodes in the IoT environment make them data points
and set the behavior status as Null for all the nodes.

13: Randomly select cluster heads or centroids from the overall data
points.

14: Select the DT Ai
A j(T ) and RT Ai

A j(T ) of each node as one data point
and randomly selected centroids as another data points.

15: Calculate the Euclidean distance between all the nodes and all
centroids.

16: Assign the node to the closet centroid.
17: Repeat the process until all the nodes are assigned to the closest

centroid.
18: Then form the cluster based on the centroids.
19: Repeat the process until the newly formed cluster’s centroid re-

mains the same.
20: Stop the process.
21: Classify the nodes based on the cluster allocation into Blackhole

nodes, trusted nodes, and Partially trusted nodes.
22: Update status in the trust table.
23: Stop the process.
24: end if
25: End

Figure 4. Example Network
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TABLE II. Trust Table of Node N1 Concerning All Other Nodes

Node’s ID DT RT Behavior
N1 0.1 0.3 Null
N2 0.2 0.2 Null
N3 0.5 0.8 Null
N4 0.8 0.5 Null
N5 0.3 0.9 Null
N6 1 0.7 Null
N7 0.3 0.3 Null
N8 0.9 0.4 Null
N9 0.3 0.7 Null

nodes N7, N9, and N8 are considered centroids or cluster
heads for cluster 1, cluster 2, and cluster 3 respectively.
Table III represents the selection of centroids.

TABLE III. Selection of Centroid Randomly

Cluster DT IT Centroid
N7 0.3 0.3 (0.3,0.3)
N8 0.9 0.4 (0.3,0.7)
N9 0.3 0.7 (0.9,0.4)

Step2: Calculate the Euclidean distance between the
nodes and the centroids as per the algorithm. Use the below
equation 7 to calculate the Euclidean distance.

Euclidean Distance =
√

(DT x − DT i)2 + (RT y − RT i)2

(7)

In the above equation 7, DT x and RT y represent the di-
rect trusts and recommendation trusts nodes in the network
respectively and DT i and RT i are the randomly selected
centroids.

Step3: Calculate the distance between the data points
(Direct and Recommendation Trust) and Cluster heads (C1,
C2, C3).

Therefore,

C1=(0.3, 0.3) N1=(0.1, 0.3)

C1N1⇒
√

(0.1 − 0.3)2 + (0.3 − 0.3)2 = 0.2

C2=(0.3, 0.7) N1=(0.1, 0.3)

C2N1⇒
√

((0.1 − 0.3)2 + (0.3 − 0.7)2 = 0.4

C3=(0.9, 0.4) N1=(0.1, 0.3)

C3N1⇒
√

((0.1 − 0.9)2 + (0.3 − 0.4)2 = 0.8

Similarly, for all other nodes in the network calculate
the distance. Table IV denotes the classification of clusters.

Then, Classify the clusters based on their names.
Hence,

Cluster1⇒ N1(0.1, 0.3),N2(0.2, 0.2),N7(0.3, 0.3)

TABLE IV. Classification of Clusters (Iteration 1)

Nodes C1 (0.3,0.3) C2(0.3,0.7) C3(0.9,0.4) Cluster
N1 0.1 0.3 0.2 0.447214 0.806226 C1
N2 0.2 0.2 0.141421 0.509902 0.728011 C1
N3 0.5 0.8 0.538516 0.223607 0.565685 C2
N4 0.8 0.5 0.538516 0.538516 0.141421 C3
N5 0.3 0.9 0.6 0.2 0.781025 C2
N6 1 0.7 0.806226 0.7 0.316228 C3

N7 0.3 0.3 0 0.4 0.608276 C1
N8 0.9 0.4 0.608276 0.67082 0 C3
N9 0.3 0.7 0.4 0 0.67082 C2

Cluster2⇒ N3(0.5, 0.8),N5(0.3, 0.9),N9(0.3, 0.7)

Cluster3⇒ N4(0.8, 0.5),N6(1, 0.7),N8(0.9, 0.4)

Step4: Calculate the new centroids or header heads by taking
the mean of all the calculated data points from each cluster.
Therefore,
The new cluster head of cluster 1 after iteration 1⇒ (0.1 + 0.2 +
0.3)/3, (0.3 + 0.2 + 0.3)/3⇒ (0.2, 0.266)
The new cluster head of cluster 2 after iteration 1⇒ (0.5 + 0.3 +
0.3)/3, (0.8 + 0.9 + 0.7)/3⇒ (0.366667, 0.8)
The new cluster head of cluster 3 after iteration 1 ⇒ (0.8 + 1 +
0.9)/3, (0.5 + 0.7 + 0.4)/3⇒ (0.9, 0.53333)

Now iteration 1 is over. Then repeat the process with the new
cluster heads. Table V denotes the new cluster head information
and Table VI denotes the classification of clusters after iteration
2.

TABLE V. New Cluster Head Information

Cluster DT IT New Cluster Head
or Centroids

C1 0.2 0.266 (0.2, 0.266)
C2 0.366667 0.8 (0.366667, 0.8)
C3 0.9 0.53333 (0.9, 0.53333)

TABLE VI. Classification of Clusters (Iteration 2)

Nodes C1 (0.2,0.266) C2(0.3,0.7) C3(0.9,0.4) Cluster
N1 0.1 0.3 0.105622 0.566667 0.833332 C1
N2 0.2 0.2 0.066 0.622718 0.775312 C1
N3 0.5 0.8 0.6125 0.133333 0.480742 C2
N4 0.8 0.5 0.644016 0.527046 0.105408 C3
N5 0.3 0.9 0.641838 0.120185 0.703169 C2
N6 1 0.7 0.910141 0.641179 0.194368 C3

N7 0.3 0.3 0.105622 0.504425 0.643772 C1
N8 0.9 0.4 0.71271 0.666666 0.13333 C3
N9 0.3 0.7 0.445372 0.120185 0.622719 C2

Then, Classify the clusters based on their names. Hence,
Cluster1⇒ N1(0.1, 0.3),N2(0.2, 0.2),N7(0.3, 0.3)
Cluster2⇒ N3(0.5, 0.8),N5(0.3, 0.9),N9(0.3, 0.7)
Cluster3⇒ N4(0.8, 0.5),N6(1, 0.7),N8(0.9, 0.4)

Calculate the new centroids or cluster heads by taking the
mean of all the calculated data points from each cluster.

Therefore, The new cluster head of cluster 1 after iteration
2⇒ (0.1 + 0.2 + 0.3)/3, (0.3 + 0.2 + 0.3)/3⇒ (0.2, 0.266)
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The new cluster head of cluster 2 after iteration
2⇒ (0.5 + 0.3 + 0.3)/3, (0.8 + 0.9 + 0.7)/3⇒ (0.366667, 0.8)

The new cluster head of cluster 3 after iteration
2⇒ (0.8 + 1 + 0.9)/3, (0.5 + 0.7 + 0.4)/3⇒ (0.9, 0.53333)

The algorithm will stop as two iterations get the same cluster
heads or centroids therefore no more iterations. Hence, the classi-
fied clusters will be considered as final. Based on the algorithm,
nodes can be classified into three categories Blackhole nodes,
Trusted nodes, and Partially trusted nodes.

From the below table, nodes N1, N2, and N8 will be con-
sidered as blackhole nodes and those nodes will be eliminated
from the network. Only trusted and partially trusted nodes will be
allowed to participate in network activations. Table VII denotes
the node’s behavior.

TABLE VII. Nodes Behavioral Status

Nodes DT RT Iteration 1 Iteration 1 Behaviour
N1 0.1 0.3 C1 C1 Blackhole
N2 0.2 0.2 C1 C1 Blackhole
N3 0.5 0.8 C2 C2 Partially Trusted
N4 0.8 0.5 C3 C3 Trusted
N5 0.3 0.9 C2 C2 Partially Trusted
N6 1 0.7 C3 C3 Trusted
N7 0.3 0.3 C1 C1 Blackhole
N8 0.9 0.4 C3 C3 Trusted
N9 0.3 0.7 C2 C2 Partially Trusted

After finding the node behavior, now is the time to discuss
the tools and techniques used to analyze the results in the next
section.

6. Results And Discussion
The suggested KmeansT has equated with traditional RPL

routing protocol and Trust-based RPL in terms of innumerable
performance metrics like end-to-end delay, packet delivery and,
detection ratio. Assessment of the KmeansT model is steered
using the lightweight emulator Cooja on the open-source operating
system Contiki 3.0. Additionally, only the Cooja simulator weighs
the RPL [22] and Trust-based RPL [27] models. KmeansT uses
TMote Sky (Sensor nodes) motees. In each experiment, we add
10 nodes every 10 rounds. The dataset utilized in the proposed
model has been generated using Python. The following Table VIII
depicts the simulation parameter settings:

A. Detection Ratio
This parameter plays a crucial role in assessing an algorithm’s

efficacy in identifying adversaries, specifically blackhole nodes
within a network. In the realm of routing protocols, the con-
ventional RPL protocol lacks inherent detection mechanisms for
such malicious nodes, which renders it ineffective in addressing
this concern. Consequently, it overlooks the imperative need for
adversary detection.

On the contrary, the trust-based variant of the RPL protocol
incorporates a singular metric to gauge node trustworthiness.
However, its reliance on a solitary metric results in a diminished
detection ratio as the prevalence of blackhole nodes escalates.

TABLE VIII. Simulation Parameters

Parameter Value
Simulation Tool Instant Contiki/Cooja 3.0
Total simulation runtime 1800 Seconds
Area covered by the
simulation

100m × 100m

Mote Type Tmote Sky
Range of Interferences 100m
No. of nodes 70 (Max)
Sink (Root Node) 1
Blackhole nodes 5-20
Legitimate nodes >20 and ≤70
Deployment Environment General
Network Protocol IP
Routing Protocol RPL
Wireless Transmission
Range

50 meters

Traffic Rate 1 packet sent every 10 sec
Radio Medium model UDGM Distance Loss
Existing Models RPL[22] and Trust-based RPL[27]

This weakness stems from the inadequacy of its measurement
capabilities when confronted with an amassed number of blackhole
nodes.

In contrast, the KmeansT protocol employs a comprehensive
approach, integrating both direct trust and recommendation trust
metrics to assess node reliability. Moreover, leveraging the K-
means clustering algorithm empowers KmeansT to effectively
pinpoint blackhole nodes. Consequently, even amidst a rise in the
population of black hole nodes, KmeansT exhibits a consistently
improving capacity for black hole node detection compared to the
trust-based RPL protocol.

Empirical evidence from simulations underscores this disparity
in detection capabilities. The average detection ratio of Trust-
based RPL stands at 19.54%, whereas KmeansT demonstrates a
significantly enhanced performance, achieving a detection ratio of
35.38% under conditions where black hole nodes are distributed
randomly. Notably, throughout the simulation runs, KmeansT
consistently exhibits remarkable efficacy, with its detection ratio
peaking at 89.42%. Table IX portrays the uncovering ratio analysis
of the proposed KmeansT and Trust-based RPL model.

TABLE IX. Detection Ratio Analysis

Number of
Blackhole Nodes

Trust Based
RPL KmeansT

10 3.5 6.4
20 12.5 17.8
30 12.3 27.5
40 21.3 34.6
50 27.7 45.6
60 29.4 54.6
70 30.1 61.2

Visual representation of these findings is illustrated in Figure
5, depicting a comprehensive analysis of the detection ratios
associated with each protocol.

B. Packet Delivery Ratio
The impression of the packet delivery ratio has been scruti-

nized in Figure 6.
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Figure 5. Detection Ratio Versus Blackhole Nodes

This metric serves as a pivotal indicator of network perfor-
mance, delineating the proportion of packets successfully reaching
their intended destinations relative to those dispatched by the
sender node. In pristine network conditions devoid of adversaries,
our simulations reveal an impressive packet delivery ratio of
approximately 97.5%. However, the introduction of blackhole
nodes at regular intervals precipitates a notable decline in this
ratio.

Notably, the packet delivery ratio of KmeansT outshines that
of the other two protocols, owing to the pivotal role played
by the K-means algorithm in blackhole node detection. As the
iteration progresses, KmeansT effectively identifies and eliminates
these malicious nodes from the network, thereby fostering a
higher packet delivery ratio compared to its counterparts. Even
in scenarios where 50% of nodes exhibit malicious behavior,
KmeansT achieves a commendable 82.5% delivery ratio. Below,
Table X illustrates the Packet Delivery Ratio. The corresponding
graphical representation is shown in Figure 6.

TABLE X. Packet Delivery Ratio Analysis

Number of
Blackhole Nodes RPL Trust Based

RPL KmeansT

10 39.7 52.3 65.3
20 37.3 48.2 64.3
30 32.4 45.3 52.3
40 29.4 34.6 47.4
50 26.3 32.5 37.4
60 17.2 19.4 27.4
70 12.3 17.2 22.5

In contrast, the reliance on a singular metric in Trust-based
RPL results in a comparatively lower packet delivery ratio, al-
though it still fares better than traditional RPL. The latter, lacking
the capability to detect blackhole nodes, suffers from a diminished
packet delivery ratio in the presence of such adversaries.

In essence, the robust detection mechanisms integrated into
KmeansT endow it with a superior ability to maintain a high packet

Figure 6. Packet Delivery Ratio versus Blackhole nodes

delivery ratio, even amidst the manifestation of malicious nodes,
thereby underscoring its efficacy in ensuring reliable and efficient
network communication.

C. End-to-end Delay

Figure 7. End-to-end delay versus Blackhole nodes

Figure 7 depicts the analysis of end-to-end delay, a critical
metric reflecting the time taken for a packet to traverse from its
source node to the designated terminus node within the network.
Ominously, the KmeansT model reveals a far lower end-to-end
delay in evaluation with the other two protocols.

This superior performance of KmeansT can be attributed to its
robust mechanisms for blackhole node detection and elimination.
By employing multiple trust evaluation mechanisms, KmeansT
effectively mitigates the presence of blackhole nodes within the
network, thereby minimizing the instances of prolonged delays
in packet transmission. Beneath, Table XI depicts the End-to-end
analysis and Figure 7 indicates the analogous graph.
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TABLE XI. End-to-end Delay Analysis

Number of
Blackhole Nodes RPL Trust Based

RPL KmeansT

10 25.5 15.5 7.1
20 35.5 23.8 14.5
30 45.8 32.5 15.5
40 58.5 48.5 32.5
50 55.5 47.5 33.5
60 58.5 54.5 27.4
70 64.2 60.1 42.6

In contrast, the trust-based RPL protocol, reliant on a single
metric for evaluating node trustworthiness, is more susceptible
to the presence of black hole nodes, consequently resulting in
higher end-to-end delays compared to KmeansT. However, it still
demonstrates better performance in this regard than traditional
RPL. Traditional RPL, lacking adequate mechanisms for detecting
and addressing blackhole nodes, exhibits the highest end-to-end
delays among the three protocols analyzed. The prevalence of
black holes within the network exacerbates delays in packet
delivery, significantly impacting overall network performance.

Quantitatively, the average end-to-end delay recorded for
KmeansT stands at 26.28%, showcasing its efficiency in minimiz-
ing delays. In comparison, traditional RPL registers an average
delay of 49.07%, while trust-based RPL falls in between with an
average delay of 35.2%. These findings underscore the tangible
benefits of incorporating robust blackhole detection mechanisms,
as exemplified by the KmeansT protocol, in enhancing network
efficiency and reducing end-to-end delays.

7. Conclusion
The Internet of Things (IoT) stands as a transformative force,

enriching our lives with an array of applications that elevate
convenience and comfort. However, this technological paradigm
shift brings forth a host of challenges, with security emerging
as a paramount concern. Given the delicate nature of infor-
mation shared within IoT ecosystems, robust security measures
are imperative to safeguard against potential threats. Among the
myriad security risks, blackhole attacks loom large, posing a grave
danger to IoT networks by indiscriminately dropping incoming
packets and disrupting essential routing operations. In response
to this pressing threat, researchers have introduced the K-Means
Clustering-Based Trust (KmeansT) evaluation mechanism as a
novel approach to fortify IoT security.

The significance of this study lies in its development of the
KmeansT approach, which offers a comprehensive trust evaluation
process integrating direct observations and recommendations from
network entities. By leveraging the K-Means clustering algorithm,
this mechanism enhances trust assessment accuracy, enabling a
more nuanced evaluation of node reliability and integrity. Partic-
ularly noteworthy is KmeansT’s effectiveness in identifying and
mitigating blackhole attacks within IoT environments. Through
rigorous mathematical modeling and simulation studies, the study
substantiates KmeansT’s efficacy in detecting and neutralizing
these threats. Simulation results provide compelling evidence
of KmeansT’s superiority in safeguarding IoT networks against
blackhole attacks, as evidenced by performance metrics such as

end-to-end delay, packet delivery, and detection ratio. In conclu-
sion, the KmeansT approach represents a significant advancement
in IoT security, offering a robust framework for safeguarding IoT
communication channels against blackhole attacks. By addressing
this critical security challenge, KmeansT contributes to the con-
tinued evolution and proliferation of IoT technologies, fostering
a safer and more secure digital landscape for users worldwide,
there remains a necessity to cultivate a more vigorous mechanism
to stabilize blackhole nodes.

8. Limitations And Future Directions
Limitations of this research offer further enhancement

prospects. First, real-time trust score adaptation to network condi-
tions and performance indicators could improve KmeansT. Adding
anomaly detection and encryption to KmeansT could enable
multi-layered security against varied attackers. Machine learning
for data trend analysis has the potential to improve KmeansT’s
threat detection. KmeansT must also be optimized for resource-
constrained IoT devices using lightweight versions or methods.
Decentralizing trust evaluation among nodes with distributed trust
management systems could improve resilience and scalability.
Assimilating blockchain technology with KmeansT to record trust
scores on a decentralized ledger could boost fidelity and account-
ability. Finally, KmeansT must be deployed and validated with
industry partners in various IoT settings to determine its efficacy
and scalability. These advances are crucial to IoT security and
KmeansT’s continued development as a powerful threat mitigation
solution.

References
[1] P. K. Sadhu, V. P. Yanambaka, and A. Abdelgawad, “Internet of

things: Security and solutions survey,” Sensors, vol. 22, no. 19, p.
7433, 2022.

[2] B. Kaur, S. Dadkhah, F. Shoeleh, E. C. P. Neto, P. Xiong, S. Iqbal,
P. Lamontagne, S. Ray, and A. A. Ghorbani, “Internet of things
(iot) security dataset evolution: Challenges and future directions,”
Internet of Things, p. 100780, 2023.

[3] M. Litoussi, N. Kannouf, K. El Makkaoui, A. Ezzati, and M. Far-
titchou, “Iot security: challenges and countermeasures,” Procedia
Computer Science, vol. 177, pp. 503–508, 2020.

[4] I. Ahmad, M. S. Niazy, R. A. Ziar, and S. Khan, “Survey on iot:
security threats and applications,” Journal of Robotics and Control
(JRC), vol. 2, no. 1, pp. 42–46, 2021.

[5] M. Liyanage, A. Braeken, P. Kumar, and M. Ylianttila, IoT security:
Advances in authentication. John Wiley & Sons, 2020.

[6] A.-a. O. Affia, A. Nolte, and R. Matulevičius, “Iot security risk
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