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Abstract: Cyberattacks are becoming more frequent and sophisticated, making their detection harder. Probe attacks in Software Defined
Networking (SDN) not given much attention by the research community, which represents the starting phase for other attacks. The
attacker scans the network to get the necessary details about hosts and services running on it to launch successful attacks exploiting
vulnerabilities in the system. The issue with probe attacks is that they occur passively, and the target system is not aware of them.
On one hand, an additional mechanism is required to check the network traffic continuously by embedding switches with independent
agents, which is against the OpenFlow standard. On the other hand, using statistics provided by OpenFlow switches to the controller,
which overloads the controller with the extra task of continuously checking traffic statistics. This work proposes a lightweight detection
mechanism that employs machine learning to detect probe attacks in real-time. The detection mechanism integrates a honeypot to detect
passive probe attacks, luring attackers with fake services and acting as a trigger mechanism to activate the detection mechanism when
needed. The experimental results show that the proposed mechanism successfully detects probe attacks in real-time, achieving accuracy
(94.73%) with the minimum CPU load.

Keywords: Intrusion Detection System (IDS), Software Defined Networking (SDN), Probe, Reconnaissance, Honeypot, Machine
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1. Introduction
Probe attacks are often considered a preliminary step in

various cyberattacks, particularly network reconnaissance.
Network reconnaissance is the first phase of the cyber kill
chain, which involves gathering information about a target
system or network to identify vulnerabilities and potential
entry points for further exploitation [1]. Probe attacks
involve port scanning, ping sweeps, network mapping, etc.
to discover active hosts, open ports, services, the type of
operating system of the target host, etc. Since such infor-
mation could be useful during attack planning to exploit
vulnerabilities associated with a specific OS or understand
how different systems are connected. After obtaining the
necessary information, attackers may perform vulnerability
scanning to find specific weaknesses or vulnerabilities in
the target systems and identify potential entry points and
weaknesses in the target’s network. Upon completion of
the initial reconnaissance phase, attackers can proceed with
more targeted and specific attacks, such as denial of service
(DoS), man-in-the-middle (MitM), and brute force, based
on the gathered information.

The issue with probe attacks is that they operate in
passive mode and are very hard to detect. Several methods

are used by the research community to detect probe attacks,
such as deploying Snort Intrusion Detection System (IDS),
which continuously monitors the network traffic to detect
malicious traffic. However, Snort is not effective to deal
with today’s attacks because they are signature-based, and
any simple deviation in the attack signature could easily
be bypassed by the attacker [2] [3]. Moreover, embedding
an OpenFlow switch with additional duties is against the
OpenFlow protocol since it clearly states that the switch
must be as simple as possible and perform only packet
forwarding.

SDN’s features, such as full control and view over the
whole network, as well as programmability, open the door
for the deployment of various security applications through
the existing open API. Some researchers exploit the power
of SDN controllers to deploy artificial intelligence (AI)-
based IDS to detect various types of attacks. AI-based IDS
methods require feature extraction from networks to check
current flows, whether they are malicious or normal. The
OpenFlow protocol provides a method to gather various
statistics details from switches through OpenFlow statistics
message requests and replies. The controller initiates the
request message to all switches, and the switches provide
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the controller with the required details. AI-based IDS take
advantage of those details for feature extraction to detect
malicious flow. However, periodic inquiries about those
features and corresponding replies lead to huge problems
for the controller.

This work is extended from a survey [4], where a deep
investigation was conducted on the works performed by
other researchers regarding the deployment of AI-based IDS
in SDN environments; some open issues and challenges
were highlighted. The survey shows that, due to the diffi-
culty of traffic feature extractions in SDN and mapping them
to the features in the dataset they used, almost all previous
studies on deploying IDS neglected real-time attack detec-
tion. Their main focus has been on achieving high accuracy
by using new machine learning (ML) and deep learning
(DL) algorithms or by using feature selection techniques
in offline training. The literature’s accuracy failed to reflect
reality due to its lack of real-time implementation detection
work. Furthermore, the survey revealed that the majority
of recent work has focused exclusively on DDoS attacks,
ignoring other types of attacks because SDN’s centralized
controllers are a prime target for DDoS attacks. Moreover,
the majority of works deployed IDS, checks the network for
malicious traffic over a fixed time interval. A longer time
interval may make it more difficult to identify the attack in
the early stages and may even give the attacker more time
to cause more serious damage to the network [2]. If interval
is very short, it has many consequences, such as increasing
the controller’s CPU load, especially in large-scale networks
[5].

In this work, we aim to solve the mentioned open
issues, and we propose a lightweight machine learning
mechanism to detect passive attacks such as probe attacks in
an SDN environment using features provided by OpenFlow
switches. The mechanism comprises of a triggering module
based on honeypots and detection and mitigation modules.
The following is a summary of this work’s primary contri-
butions:

• Early detection and prevention of attacks since we
consider probe attacks, which are regarded as the
initial stage of nearly all other kinds of attacks,
including DDoS, botnet, MitM, etc. In other words,
we break the first phase of the attack kill chain before
gaining control of the target system.

• To identify passive attacks, we proposed a lightweight
mechanism that exploits the honeypot’s capability,
which acts as a trap by luring attackers by providing
fake services.

• We used the honeypot as an alerting mechanism to
minimize the CPU overhead of the SDN controller
in a large-scale network by triggering the detection
module when needed instead of continuously check-
ing the traffic. Moreover, the honeypot contributes to
filtering the flow of traffic by providing additional

useful details about the attacker.

• We conducted a simulation scenario to verify the
proposed mechanism in real-time, considering attack
detection in its early stages as well as attack mitiga-
tion.

2. RelatedWorks
The novel SDN architecture allows the research com-

munity to take advantage of its features of programmability,
flexibility, and ease of deployment. Implementing a security
application, which resides in the controller, exploits the
power of ML and DL to detect malicious traffic in a
network. This section briefly introduces some recent and
popular approaches that have been suggested for attack
detection in an SDN environment using AI capabilities.

In [6], the Grey Wolf Optimization (GWO) feature
selection technique was put into practice in an effort to
boost IDS’s ability to more precisely identify probe attacks.
They discussed how feature selection improves the detection
model as a whole. They emphasized that choosing the
right features is crucial to cutting down on computation
time, which will increase the classifier’s accuracy when the
best features are chosen and reduce the amount of data
needed for training and testing. Furthermore, it is simpler to
extract fewer characteristics for real-time detection, which
reduces detection time. They demonstrated that accuracy
increased to 99.8% when the Light Gradient Boosting
Machine (LightGBM) classifier was used to select a subset
of 8 characteristics from the InSDN dataset. Accuracy was
only 77.3% when all features were used. They did not,
however, use real-time detection, and their topology was
identical to the dataset’s author.

In another direction, some studies have developed hybrid
IDS that merge flow-based IDS with signature-based IDS
to provide a more robust detection mechanism. The author
in [7] implemented two approaches for detecting DDoS
attacks in SDN. First, they use signature-based Snort IDS
alongside SDN to analyze the network for malicious traffic.
Second, implementing a machine learning Support Vector
Machine (SVM) model trained with NSL-KDD dataset to
detect unknown attacks. The motive behind using both
methods is that the unknown attacks are detectable by
machine learning, and their signatures will be stored in
the Snort database to make Snort able to detect them next
time they occur again. The drawback of this method is that
they implemented Snort as an independent hardware module
connected to a switch, which requires additional resources
and whose performance degrades when the network is
larger.

In the same context, the author in [8] used Snort IDS,
which connects to an Open vSwitch and monitors the
network through port mirroring. They also provide flow-
based IDS in the controller to overcome the shortcoming
of Snort being unable to detect novel attacks. The Open-
Flow statistics message was used to extract features for
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machine learning over a certain time interval. They selected
seven features that can be easily obtained by SDN nature.
However, using a combination of both Snort and machine
learning leads to issues in large networks and creates a load.

The detection of DDoS attacks in SDN environments
has been covered in [9]. The author proposed two lines
of security. First, they used Snort to detect known attacks
in signature-based databases. The second defense line was
using ML and DL to detect anomaly-based attacks. They
used SVM and Deep Neural Network (DNN) models, which
trained on the NSL-KDD dataset, and the accuracy was
74.3% and 92.3%, respectively. Snort is used in this work
for detecting known attacks in signature databases and
as a data collector for ML and DL models. However,
they periodically monitor the network for anomalies, which
makes their detection mechanism active even when there is
no traffic overload on the controller.

In [10], a comparative analysis of different feature
selection algorithms for detecting DDoS attacks based on
various machine learning models is presented. The exper-
iment was conducted using feature selection algorithms
such as Information Gain (IG), Correlation Coefficient, Chi-
square, Forward Feature Selection (FFS), Backward Feature
Selection (BFS) and Recursive Feature Elimination (RFE).
Machine learning classifiers such as SVM, Decision Tree
(DT), Random Forest (RF), Naı̈ve Bayes (NB), and K-
Nearest Neighbor (KNN) are used for binary classification.
The optimal model was RF with an accuracy of 99.97%
using a feature subset of 28 selected by the RFE. They
mentioned that the detection model used OpenFlow statis-
tics messages to get 41 features of NSL-KDD. However,
it is very difficult to get those numbers in real time, as
highlighted before.

In order to categorize DDoS attacks in an SDN context,
an attack detection and mitigation mechanism was presented
in [11]. It used a hybrid model of Convolutional Neural
Network (CNN) and Extreme Learning Machine (CNN-
ELM). Their model used data from the SDN environment to
detect DDoS attacks. Both packet-in messages and statistics
messages supplied to the controller by OpenFlow switches
included this information. Twelve features were mapped
from the InSDN dataset to the extracted features of the
OpenFlow switch. They also created additional features.
The results of the experiments demonstrated that utilizing a
selection of 12 attributes reduced test times while simultane-
ously improving accuracy. But since each packet-in message
needs to be examined, this mechanism adds overhead to the
controller and is ineffective in the event of a DDoS attack.
Furthermore, their methodology was not validated, and it
was unclear how features would be taken out of packet-in.
Plus, the four features that were manually constructed were
also unverified.

Similar to this, the Deep Convolutional Neural Network
(DCNN) was suggested by the authors in [12] as a way to

identify DDoS in SDN. They offer identical mitigation and
detection methods as previous studies. With the exception
of sending periodic OpenFlow statistics messages to the
controller for anomaly identification, they utilized just the
features offered by the flow table. They stated that they
only gathered data from the OpenFlow switch using 12
of the InSDN’s mapped features. They claim that the
current system has issues with using a lot of features for
deep learning or machine learning and that more functions
are required to extract them, which increases latency and
congestion on the network. On the other hand, relying solely
on a small set of features is insufficient for accurate assault
detection. However, during actual usage, they employed
78 features—rather than just 12—for training. Mapping
the 78 properties of the InSDN dataset to the fundamen-
tal features offered by OpenFlow switches is challenging.
Furthermore, the controller incurs expenses due to their
technique, which necessitates the controller inspecting each
packet-in message and frequently seeking statistics from the
switch. As with earlier studies, features were not verified
and the process of extracting them from packet-in was not
clearly described.

To prevent DDoS attacks, a lightweight machine learn-
ing model was proposed in [13] that uses flow fluctuation as
a single feature, which represents the number of packet-in
messages repeatedly sent to the controller over a fixed time
slice. To implement the proposed methodology, they created
their own dataset. However, the InSDN dataset was utilized
exclusively for model training and testing. Concentrating
on a single feature is justified on the grounds that it will
be more straightforward to acquire and necessitate reduced
time and resources for real-time prediction and training.
Concentrating on a single feature is advantageous because
it simplifies acquisition and reduces the time and resources
needed for real-time detection. Seven features from the
InSDN dataset were utilized, and multiple machine learning
models were implemented. The findings of the research
suggest that Binary Tree (BT) and KNN exhibited the
highest levels of effectiveness with regard to accuracy.
However, KNN demonstrated superior performance in terms
of training time, CPU utilization, and decision time as well.
They assessed the proposed work using their own dataset
and obtained a 99.4% accuracy rate with BT using a single
feature. As stated by the author, an excessive number of
features may either improve the performance of certain
models or cause them to become overfitted. However, the
authors neglected to specify the feature selection methods
that were employed. Furthermore, a number of the selected
features, including timestamps and flow-ID, were deemed
irrelevant and potentially hindered the learning process
throughout model training. In addition, the decision time
is prolonged due to the time slice methodology and the
controller’s continuous verification of the packet-in count.
In conclusion, the utilization of a single attribute for training
the intrusion system produces minimal possibilities for
success.
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Figure 1. Defense System Modules Diagram.

In summary, the majority of the existing work in the
literature targets DDoS attack detection only, neglecting
other attacks. The focus of the previous works was on
the analysis of the proposed models to achieve high ac-
curacy or implementing some studies on feature selection
algorithms, and the real-time detection process was not
adequately explained or neglected. Moreover, some works
monitor packet-in messages as well as statistics messages
to construct their features, but none of them considers
the overload that is created on the controller when it
periodically checks the network traffic or extracts traffic
features. In this work, we consider the probe attack, which
is considered as the first step of other attacks, and extract
a limited number of features through the statistics provided
by OpenFlow switches to ensure a fast and lightweight
detection mechanism. We consider the tradeoff between
high accuracy and low controller overhead by using a
triggering mechanism for checking malicious traffic when
needed instead of periodically. We implemented our own
dataset, which contains feature dimensions that are eas-
ily obtained from OpenFlow switches, and evaluated the
efficiency of the dataset using many common supervised
learning algorithms such as DT, RF, Adaptive Boosting
(AdaBoost), NB, XGBoost, and KNN.

3. The Proposed DetectionMechanism
In this section, we describe the methodological stages

followed to build the proposed probe detection mechanism.
The SDN features make SDN operation easier and offer
a number of benefits [14]. This motivates the deployment
of light, effective, and attack detection in real-time. Our
proposed SDN defense system is distributed on two sides,
as shown in Figure 1. On the controller side, where the
detection and mitigation modules reside, as well as on
the host side, where honeypot resides as a trap to lure
attackers and notify the controller when possible malicious

traffic is detected. Honeypot is a deception mechanism used
to lure attackers by providing fake services. Any contact
with the honeypot is considered a possible attack. This
contact will trigger the detection module in the controller
to start checking the current flows in the network instead of
continuously checking the network periodically. In addition,
the honeypot is programmed to send some useful details to
the controller with a triggered message about the attacker
traffic to filter out the possible malicious flows and reduce
the load on the CPU.

Machine learning techniques have recently dominated
IDS research because they produce more accurate predic-
tions than other techniques [15]. Machine learning models
can overcome the drawbacks of other methods by clas-
sifying abnormal traffic as an anomaly with self-learning
capabilities [16]. ML has been deployed in a wide area,
from medical analysis and image processing to data mining.
The concept of machine learning is to make machines
learn automatically from the given training data without
human intervention [17]. However, machine learning re-
quired input values to feed to create prediction output
based on those inputs. These inputs should be extracted
from the live attributes of traffic flow to accurately detect
malicious traffic. SDN controllers’ beneficious features,
such as power and storage provided, open programmability,
global visibility and control, and statistics features provided
by the OpenFlow switch, make them suitable locations
for implementing machine learning intrusion detection and
mitigation applications. Due to the availability of those
features, in the proposed work, machine learning models
are implemented in the controller for classification.

As shown in Figure 2, the detection and mitigation
applications are inactive in the controller, waiting to be
triggered to check traffic flow when necessary. Honeypot
is actively providing some fake services to lure attackers
along with real services on the network. The defense
mechanism can be described in pseudocode in Figure 3.
When the attacker first initiates the probe attack to check
for active hosts and services in the network, the honeypot
is configured to register all events on a dedicated log file
for every connection attempt to the services they provide.
In general, the log file is used for analyzing the attacker’s
movements and steps during the attack.

However, in this work, we utilize the honeypot to be
exploited as a triggering mechanism to alert for possible
attacks. Once the log file registers an event, a special
Python script monitors the log file and extracts the IP of
the attacker, the protocol of flow, and the port used by the
attacker. Later, the mechanism constructs a special packet-
in message to be sent by the OpenFlow switch to the
controller with a special ethertype field code ‘0x88FF’ to
be recognized by the controller as a trigger message. In the
next step, once the controller receives the trigger message, it
will forward it to the detection and mitigation application.
The application creates a flow statistics request message
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Figure 2. The Framework of The Proposed Mechanism.

Figure 3. Defense System Pseudocode.

to be forwarded to the switch, which is connected directly
to the host where honeypot exists through the switch ID
provided by the packet-in trigger message. After receiving
the reply messages from the switch, which contain flow
entry statistics, they are filtered by other details provided by
Honeypot, such as IP, port, and protocol. Then the necessary
features are extracted from the filtered flows and fed to the
ML module for testing. Once the malicious flow is detected,
the attacker’s domain is located, and the controller initiates
a packet-out message to block the attacker’s source port.

A. Dataset Preparation
The accuracy of the predictions generated by machine

or deep learning-based IDS is significantly influenced by
the use of high-quality datasets during model training.
Comparing to other domains, such as computer vision,
there are limited datasets for intrusion detection in general
and for probe attacks specifically due to privacy and legal

issues [2] [18]. In the past few decades, academics have
used a number of well-known public datasets, including
the KDD Cup, NSL-KDD, UNSW-NB15, and CICIDS2017
databases. Since SDN is a new paradigm, compared to tradi-
tional networks, there are fewer research studies that address
the intrusion detection problem in SDN. According to the
authors of [15] [19] [20], the majority of published research
addresses SDN intrusion detection, which is identical to
traditional network intrusion detection.

Scholars employed classical network datasets, like KDD
Cup and NSL-KDD, as training datasets for anomaly de-
tection in SDN contexts. Training the SDN-based IDSs
using old datasets can cause significant issues, as they only
detect attacks, which have similar behavior in both SDN
and traditional networks. Because intrusion attack tactics
are always evolving, they are getting more complex and
difficult to spot [19]. Since these datasets were published so
long ago, they are either old or unreliable [15] [21], or they
suffer from compatibility issues since they were collected
during the traditional networks and the SDN architecture is
different. As a result, using them for real-time detection is
ineffective [21].

The InSDN dataset [22] was published as an SDN-
specific dataset in 2020 for the purpose of assessing and
training IDS within SDN environments. The work in [4]
conducted regarding this dataset reveals that applying this
dataset for IDS deployment in SDN research has mostly
focused on achieving high accuracy by using new machine
or deep learning algorithms or by training offline while
employing feature selection algorithms. The literature’s
accuracy failed to reflect reality due to its lack of real-
time functionality and the absence of a clearly defined
implementation of real-time detection work. This is due to
the struggle of extracting the necessary features from the
traffic flow in order to match them to the features in the
dataset.

In this work, we focus on a binary classification for
detecting probe attacks and do not delve further into classi-
fying the various types of attacks. In this work, we created
our own dataset specifically for training and evaluating
the proposed IDS for detecting probe attacks in the SDN
context. The dataset contains 282128 instances in total, with
sample sizes of 126685 (45%) for the normal class and
155443 (55%) for the probe class, respectively. The probe
traffic was collected by initiating a live host scan, port scan,
version scan, service scan, OS detection, etc. For normal
traffic, we replicated the proper random inter-departure time
and packet size by creating traffic at the packet level as
well as multiple sessions of parallel, sequential, and bidirec-
tional streams. Numerous widely used application services,
including HTTPS, HTTP, FTP, SFTP, Telnet, DNS, VoIP,
and others, are represented in the normal traffic. All hosts
connected to the internet and ordinary daily tasks executed
by executing several applications, such as browsing different
websites, watching YouTube videos, and sending emails, to
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mimic real internet traffic.

Deploying AI-based IDS requires features from real-
time traffic to feed the classifier model for decision-making
in real-time. The first task of the IDS is to collect traffic
statistics and related information about flows. Many studies
have implemented ML and DL models in SDN, but finding
the data source that offers the attributes needed for real-time
detection is a difficult task. Either they had to use methods
used in traditional networks by using dedicated tools in
the forwarding plane acting as sensors like Snort and
sFlow agents, which degrade performance, or using features
provided by SDN. Nowadays, networks are faster due to the
requirements of applications and advances in technology.
The intrusion detection mechanisms need to consider their
performance in terms of detection time. The demand for
lightweight IDS is a hot topic in academia nowadays. The
trade-off between model accuracy and execution must be
addressed carefully. Choosing the best features is essential
to improving SDN-based IDS efficiency.

Having a large dataset with a huge number of features
will delay training, testing, and model detection. In addition,
using a high-dimensional dataset may not necessarily lead
to higher accuracy due to overfitting and redundant features
[23]. Reducing the number of features or selecting relevant
features in general will lead to a decrease in model training,
testing, and detection time, as well as model complexity,
since real-time feature extraction is not an easy process [2]
[23]. Moreover, feature selection reducing high dimension-
ality reduces the likelihood of overfitting issues in the model
[2]. In order to obtain excellent model performance utilizing
ML and DL, many researchers have turned their attention
to the removal of noisy, duplicate, and useless features [2]
[24] [25].

B. Feature Extraction
In the SDN framework, there are some points of feature

extraction that can be beneficial for feeding the model, such
as:

1) Controller packet-in messages: Upon receiving the
initial packet of a particular flow, the OpenFlow
switch will examine the packet header and determine
whether any flow rules exist in one of its flow tables
that correspond with the flow [26]. There is an action
connected to every flow rule. The traffic flow will be
redirected to the appropriate destination if a match is
identified. When there is no match and a miss table
appears, the switch uses the packet-in message to
convey the packet to the controller, who processes it
and determines what to do with it. Some researchers
used packet-in behavior to construct some useful
features that successfully detect DDoS attacks, as in
[11] [12] [13] [27].

2) OpenFlow statistical messages: Basic information
about the flows could be obtained by parsing the
OFP Stats Reply messages of an SDN network

Figure 4. Data Preprocessing Steps.

[21]. These messages were sent to the controller in
response to the OFP stats request by the controller.
Usually, this happens periodically, depending on
the specific event triggered. This process does not
require additional effort because it is provided by the
controller according to the OpenFlow specification.

3) Using independent agents: using other methods for
capturing network traffic, like in [27], which com-
bined an OpenFlow switch and sFlow for effective
anomaly detection in an SDN environment [28]. In
addition, others in [9] have used Snort as a data
collector.

In our mechanism, we used the OpenFlow statistical
messages method to obtain the required features since they
are easily obtained in an SDN environment and do not
require an additional agent extended to the data plane switch
following the OpenFlow protocol specification. The features
extracted are shown in Table I.

C. Preprocessing Stage
An essential step in preparing the input data for the

model’s training in order to create an accurate detection sys-
tem is data preprocessing. To prevent the overfitting issue,
the created dataset does not include socket information such
as source IP, destination IP, flow ID, etc.[2], where such
data can be changed from network to network. In addition,
since we aimed to record the features related to the behavior
of attacker flow, we excluded source and destination ports
because they are often constant values representing network
identifier attributes, which may lead to overfitting. As the
dataset does not contain a large number of samples, we
deployed ML mechanisms instead of DL, since the latter
proved to be effective with large datasets [18] [19]. As a first
step in preprocessing, as depicted in Figure 4, the dataset is
checked to see if it contains empty or null values to prevent
any significant effect on the model efficiency. Moreover,
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duplicated samples were removed from the dataset. Nor-
malization, which involves transforming data to a common
scale, is an essential preprocessing step in machine learning.
We used Min-Max scaling to make values between “0” and
“1” to ensure that all features have the same scale, making
it easier to compare their importance and contributions to
the model. We divided the dataset, where 80% is used for
training and the other 20% is kept aside for the model test
to see how well we can predict the data.

We performed cross-validation with k = 5 to make sure
there is no bias in performance estimation to prevent an
imbalanced occurrence where the minority class is signifi-
cantly underrepresented compared to the majority class. The
fundamental principle of cross-validation is to divide the
dataset into several folds, or subsets, and train and test the
model repeatedly on various combinations of these folds.

D. Practical Implementation
The proposed work is implemented using the Python

programming language. Mininet version 2.3.1, beta 4, a net-
work simulator designated for SDN education and research,
was utilized to implement and evaluate the suggested tech-
nique. Mininet was installed on a virtual machine, Ubuntu
20.04, with 12 GB of RAM and 4 CPU cores. The Ryu
controller is used as the SDN controller in the testbed for
managing compliant switches. It operated with Layer 4 (L4)
learning capabilities to forward flow traffic based on the
matching of the MAC, IP, protocol, and service port. Scikit-
learn, an open-source library used in our work to implement
machine learning. On the host side, to deceive the attacker,
we used Honeyed as a low-interaction honeypot. During the
experiment, we generated probe traffic using the NMAP
tool, and for normal traffic generation, the Iperf and D-
ITG tools were used. Moreover, we performed some real
tasks such as browsing the internet, watching YouTube,
using emails, downloading and uploading files, and SSHing
different mininet hosts to generate realistic traffic.

4. Findings and Discussion
The performance of the suggested mechanism is evalu-

ated using the evaluation metrics covered in depth in this
section, which is then followed by a detailed presentation
of the findings and outcomes. For evaluation, seven popular
ML models were adopted to determine the best model,
including DT, RF, NB, AdaBoost, LightGBM, and KNN
classifiers. By employing this diverse set of models, we
intended to select the one that best fits the characteristics
of our data and the requirements of the mechanism. The
equations in Table II. show the metrics used to evaluate the
proposed mechanism in terms of accuracy, recall, precision,
and F-measure, respectively.

Where TP, FN, TN, and FP stand for true positives,
false negatives, and false positives, respectively. As depicted
in [4], the majority of scholar articles used other metrics
such as F1-score, precision, and recall because the average
model’s performance tends to favor the majority classes’
performance, it is impossible to fairly assess classification

Figure 5. XGBoost AUC ROC Curve.

Figure 6. XGBoost Confusion Matrix.

performance under the imbalanced dataset using only the
accuracy rate. A confusion matrix was utilized for each clas-
sifier in order to precisely assess the suggested mechanism
and compute these performance indicators; the outcomes
are displayed in Table III. Among the ML models used,
their results were very good, except for NB, since they are
commonly used for text classification tasks. The XGBoost
model achieves the best result in terms of accuracy 94.73%
as well as precision, recall, and f1-score.

Moreover, the author in [15] emphasizes the significance
of the Area Under Curve (AUC) metric for the catego-
rization of unbalanced datasets. The AUC of the XGBoost
classifier obtained good results of about 0.98%, as seen in
Figure 5. The confusion matrix of the XGBoost classifier in
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TABLE I. Features Used in Proposed Mechanism.

Feature Description

flow duration (nsec) The duration of flow remaining in the switch flow table in nanoseconds
ip proto The flow protocol
srcport Source port
dstport Destination port

byte count Total flow bytes
packet count Total flow packets

byte/s Number of flow bytes per second
pkt/s Number of flow packets per second

TABLE II. Evaluation Metrics Description

Accuracy Precision Recall F1 Score

Percentage of true classified
flow in relation to all classi-
fied flows

Percentage of malicious
flows identified correctly
in relation to all flows
classified as attacks

Percentage of correctly clas-
sified malicious flows ver-
sus all malicious flows pre-
sented in the dataset

The harmonic mean be-
tween precision and recall

(TP+TN)/(TP+TN+FP+FN) TP/(TP+FP) TP/(TP+FN) (2*Precison*Recall)/ (Pre-
cision+Recall)

TABLE III. Precision, Recall and F1 Score of Models Evaluation

Classifier Accuracy Precision Recall F1-score

DT 0.9390 0.9449 0.9378 0.9397
RF 0.9400 0.9457 0.9392 0.9410
NB 0.8449 0.8830 0.8356 0.8374

AdaBoost 0.9196 0.9260 0.9203 0.9218
XGBoost 0.9473 0.9544 0.9458 0.9480

LightGBM 0.9459 0.9532 0.9445 0.9467
KNN 0.9128 0.9170 0.9126 0.9139

Figure 7. Tree Topology (Depth 4, Fanout 2).

Figure 6 shows that our detection mechanism successfully
recognizes probe attacks, but the ratio of normal traffic
recognized as probe attacks (false positive) needs more
consideration.

Figure 8. Ryu Controller CPU Utilization.

We conducted another experiment with a larger topology
of tree with depth 4 and fanout 2, as shown in Figure 7,
to support the hypothesis we previously highlighted in
this article, which states that continuous traffic checking
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through statistics requests and reply messages by detection
applications will lead to an increase in controller workload.
This topology aims to increase the number of switches and
hosts in the network, which will increase the number of flow
rules in each switch. In this stage, normal traffic originated
from each host to another, creating huge traffic.

Four separate scenarios were employed in order to assess
the controller CPU load, as seen in Figure 8. Several traffic
checking intervals, such as 1, 5, and 10 seconds, were
chosen for the first three scenarios of statistics request
message sending. In the final scenario, honeypot trigger-
ing solutions are employed in place of periodic checking
when necessary. Only normal traffic was transmitted for all
scenarios, and when controllers checked the traffic for each
second, controller overhead was quite high 33%. Controller
overhead significantly decreased when the interval was
extended to every 10 seconds, but attackers in this case will
have plenty of time to compromise the network. However,
since the detecting mechanism is in sleep mode and would
activate anytime there is an alarm, our idea of applying a
triggering mechanism successfully lowered CPU demand to
2.1%.

5. Conclusions and FutureWork
Due to the growing threat of cyberattacks in SDN

environments and the lack of built-in security mechanisms,
this model finds it difficult to replace traditional network
architecture. One important attack that is neglected by the
research community is the probe attack. Probe attacks are
considered the first phase of other serious attacks such as
DoS, botnets, MitM, brute force, etc. to exploit vulnerabil-
ities in the network. The issue with this attack is that it is
hard to detect since it works passively without being no-
ticed. Machine learning and deep learning are widely used
in current works for detection techniques because of their
ability to detect novel attacks, contrary to classical methods
of using independent agents in networks, which depend
on fixed thresholds or attack signatures. In this work, we
propose a novel online lightweight detection mechanism
empowered by machine learning models. Our approach
leverages the dynamic nature of SDN to embed honeypots
within the network infrastructure. These honeypots on the
network host serve a dual purpose: they lure potential at-
tackers by presenting fake services, and they act as triggers
for our detection mechanism in the SDN controller when
any traffic contacts them. Machine learning models need
a good dataset to provide accurate detection in real-time.
Therefore, we collected a new dataset specific to probe
attacks in SDN environments. Contrary to other datasets,
which are either outdated, incompatible with SDN, or whose
features cannot be easily obtained, our dataset features were
collected through OpenFlow statistics messages that can be
easily collected in an SDN environment. Through extensive
experimentation, we have demonstrated the efficacy of
our proposed system. Notably, our detection mechanism
achieves an exceptional level of accuracy, while imposing
minimal stress on the SDN controller’s CPU. These results

underscore the practical viability and effectiveness of our
approach on strengthening SDN security against evolving
cyber threats.

However, the effectiveness of the mechanism is con-
tingent on attackers engaging with honeypots, a strategy
that may not always be reliable against more sophisticated
threats. Additionally, the attacker might be able to identify
the honeypot and avoid it. Periodic traffic monitoring may
be able to resolve this problem, but as this article has
previously shown, it also increases controller CPU demand
and generates network overhead. The future work of this
research is to develop a method to prevent honeypot finger-
printing and continuously examine traffic without adding
controller overhead.
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