&P International Journal of Computing and Digital Systems
g > ::} ISSN (2210-142X)
Int. J. Com. Dig. Sys. 16, No.1 (Aug-24)

Ay

s,
KTt

http://dx.doi.org/10.12785/ijcds/160172

The Development of the Secure Quality Dataset (SQDS):

Combining Security and Quality Measures Using Deep Machine Learning for Code
Smell Detection

Hiba M. Yahya' and Dujan B. Taha’

'Department of Software, University of Mosul, Mosul, Iraq
2 Department of Computer Science, University of Mosul, Mosul, Iraq
Received 25 Feb. 2024, Revised 11 May 2024, Accepted 13 May 2024, Published 10 Aug. 2024

Abstract: Code smells are a signal of deviation from design principles or implementation in the source code. Early detection of these
code smells increases software quality by using refactoring techniques that will help the developers in software engineering maintain
the process of software. Security is included as one of the requirements of software artifact quality in the ISO/IEC 25010 standard so
we thought the security in the design phase is more efficient than after delivery of the software to the customer. A study aims to create
a new dataset containing security metrics besides the quality metrics that will help software engineering researchers by detecting both
the existence of a security illusion and god class bad smell at the same time in a program, we take Fonata’s dataset of god class that
have 61features of quality metrics, then calculate the security metrics on these 74 software written in java by programming a parser
to analyze each software, finally used five machine learning algorithms on the proposed dataset (SQDS), after that, we used accuracy
performance metric was employed for comparing the results. The experimental findings suggest that the proposed dataset demonstrates
superior performance in identifying code smell security vulnerability and augmenting the training data can improve the accuracy of
predictions. Finally, we applied three deep machine learning (RNN, LSTM, and GRU) on both the original Fonata’s Dataset of God
Class bad smell and our proposed SQDS dataset and made a comparison between them.

Keywords: Security metrics, God class bad smell, Quality metric, Machine learning, Deep learning

1. INTRODUCTION

Security is included as one of the requirements for
software product quality in the ISO/IEC 25010 standard.
According to this standard, security denotes to the degree
of system or a product will protect its data to ensure
that different goods or people might access appropriate
data according to their categories and authorizations. The
eight quality attributes that make up the ISO/IEC 25010
defined product quality model are functional suitability,
performance efficiency, compatibility, usability, reliability,
security, maintainability, and portability [1].

A study aims to create a new dataset containing security
metrics besides the quality metrics that will help software
engineering researchers by detecting both the existence
of a security illusion and God class bad smell at the
same time in a program, using deep machine learning
to detect each of illusion of security and God class bad
smell. The experimental findings suggest that the proposed
dataset demonstrates superior performance in identifying
code smell security vulnerability and augmenting the train-
ing data can improve the accuracy of predictions.

Nowadays, the majority of software systems must meet

security requirements [2]. Nevertheless, not all security
problems can be resolved by traditional software metrics,
resulting in the creation of several software systems that are
hazardous [3]. In the initial stages of developing software,
security concerns should be given more importance. The
majority of developers and organizations often believe that
security should be included after a system is developed. For
maximum efficiency and effectiveness, security early on in
the development process, it should be taken into account
[4]. To safeguard their systems, the majority of businesses
invest a significant amount of money in purchasing firewall
and antivirus software [5].

The degree to which a system or product protects
information and data so that users or other systems or
products can access it appropriately based on the types and
degrees of authorization is known as security. It is made up
of the subsequent sub-characteristics:

e Confidentiality: is the degree to which a system or
product makes sure that information is only reachable
to those who are permitted to do so.

e Integrity: is the level of protection provided by a

E-mail address: hibamoneer @uomosul.edu.iq, dujan _taha@uomosul.edu.iq

https://journal.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/160172
https://journal.uob.edu.bh

\)
A
N

Lk

%,

(a0 ks,

Baas
996 "'”'Mj Hiba M. Yahya and Dujan B. Taha: The Development of the Secure Quality Dataset (SQDS)

system, service, or product against illegal entree to
or alteration of data or software.

e Non-repudiation: is the extent to which events or acts
can be conclusively demonstrated to have occurred
and, as a result, cannot be subsequently denied.

e Accountability: is the degree to which a unit may be
held personally responsible for its actions.

o Authenticity: is the degree to which it is feasible to
confirm the identity of a topic or resource.

Code smells can arise from any modifications made to
the source code that go against the principles of software
design. Code smells are defects in design or changes made
by developers that may have an impact on future system
quality and cause challenges with maintenance.

Code smells may lead to technical debt and the degra-
dation of software projects if they are not addressed. Code
smells can therefore be used as a sign to determine whether
the source code needs refactoring [6]. The first step in
the code refactoring process is to find bad smells in the
code. Code scent detection methods often depend on object-
oriented metrics as inputs to identify code smells in soft-
ware projects. Many different tools for static analysis and
code reorganization techniques have been established that
carefully examine the source code to find and fix problems

[7].

Machine learning approaches involve the training of
supervised models using data extracted from the same or
a different software project. To model the source code
components, metrics are used, similar to heuristic-based
approaches. However, ML approaches differ in that they do
not necessitate the specification of threshold values. Instead,
they depend on data-driven learning to determine whether
a particular code component is categorized as “smelly” or
“non-smelly”.

Supervised learning algorithms, such as recurrent neural
networks (RNN), have been responsible for the remark-
able progress in deep learning in recent years. RNNs are
currently active in various practical applications like text
generation, auto-translation, speech recognition, and code
smell detection [8].

Our paper follows this structure: Section two discusses
the related works, section three provides background on
software security metrics, code smell detections, and deep
machine learning. The methodology of the research is
obtainable in section four. Sections five and six present the
results and its discussions and finally conclusions section
and then future works.

2. RELATED WORK

After 1999, when Fowler et al. published a book that
outlined various bad code smells and the corresponding
refactoring techniques, research into detecting these code

smells began in the field. Numerous literature reviews and
surveys have been carried out in the domain of code smell
identification and refactoring [10], [11], [12].These investi-
gations have demonstrated several methods and tactics for
identifying poor code smell in current software systems
through the utilization of machine learning methods [13].

Subedi [14] proposed a procedure for gathering, process-
ing, and analyzing code smells from various open-source
projects in order to use the LSTM machine learning model
to detect code smells intelligently. Sharma et al. [15] used
CNN and RNN as their major hidden layers along with the
auto encoder model. They perform training and assessment
on C# examples and Java code.

In [16] the purpose of this study is to compile and
integrate the research on deep learning (DL) methods for
odor identification. Considering the speed at which DL
approaches are developing, we think that a study and
analysis of the corpus of existing research would aid in the
creation of new methods as well as aid in the identification
of research gaps in this field. Methods: Up to October 2021,
67 studies on DL-based unpleasant scent identification were
published. These were found using a methodical way.

By rearranging internal design elements to remove sys-
tem vulnerabilities, software refactoring may be utilized to
increase security of software.

Refactoring is a technique for reorganizing software’s
internal architecture without affecting its functionality [6].
Numerous investigations were carried out to gauge the
design’s early weaknesses. In [17] for the object-oriented
layout, the researchers developed a set of safety measures
that may help designers identify and address safety issues
early in the design process. These measures might be
helpful tools for assessing the security of various layout
iterations. Specifically, it was suggested that seven protec-
tion measures be used to determine the degree of concord
and encapsulation.

AL Mogahed et al. Software systems with high compat-
ibility, low coupling, and minimal complexity are shown to
be more secure, and vice versa [18].

In [19] the researchers use a dendrogram to illustrate
the hierarchical grouping based on the correlations between
software metrics and code smells to determine how com-
parable code smells are. This offers a new approach to
classifying code smells.

Vulnerability identification is aided by the possibility
of identifying bug patterns that may result in security
vulnerabilities due to the broad availability of open-source
code for analysis. Researchers in cybersecurity and software
engineering have been motivated by recent advances in
deep learning to use these methods to identify and ana-
lyze dangerous code patterns and semantics that point to
vulnerable code characteristics. The authors of this paper

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No.1, 995-1006 (Aug-24)

¥

A0)

G 7

w997

Uy

10 Allgy

assess and examine twelve research that use DL and MI
techniques to find software vulnerabilities. The purpose of
this review is to further knowledge on how neural network-
based techniques may be used to learn and understand code
semantics, which will aid in vulnerability finding [20].

Previous studies in this field typically employ one of
two approaches: either applying ML or DL techniques for
identifying undesirable patterns in software code, or man-
ually measuring a few specific security metrics to evaluate
code susceptibility to attacks. My research introduces a
distinctive methodology by creating an automated tool that
conducts comprehensive scans of software programs and
autonomously calculates seven different security metrics.
This innovation bridges a critical gap in current research by
merging automated techniques with security assessments,
thereby increasing the precision and efficiency of security
metric evaluations in software systems.

A major step forward in tackling the ubiquitous prob-
lems of system vulnerability and data breaches in modern
software development is the integration of security measures
with quality metrics in databases. In this study, A unique
database combining satisfactory and security measures is
provided, and system studying and deep getting to know
techniques are used to evaluate the data. Security measure-
ments ought to be protected since they offer critical insights
into viable vulnerabilities that may not be visible with
handiest first-rate measures. The machine’s usual security
posture can be stepped forward through extra effectively
identifying and mitigating complicated protection dangers
via the software of superior mastering algorithms to this
extended dataset.

In addition, the integration of those security measures
with first-class metrics ensures the system’s resilience to
attacks and upholds nice standards, which might be vital
for machine preservation and dependability. This twin-
cognizance method guarantees that the machine’s perfor-
mance and maintainability healthy excessive necessities
whilst also addressing the twin necessity of defending
towards security threats. Therefore, a holistic technique to
improving software program maintenance and safety within
a single framework is supplied by using the implemen-
tation of integrated safety and pleasant metrics. Software
engineering research in the past has mostly concentrated
on using quality metrics to find and identify code smells
or security metrics to find vulnerabilities in software sys-
tems. The majority of these studies were conducted in
siloed paradigms, with quality metrics trying to increase
readability and maintainability of code and security metrics
concentrating on strengthening the system’s resistance to
possible intrusions and assaults. But it’s becoming increas-
ingly clear that bad code smells, like feature envy or God
classes, can lead to security flaws as well as lower software
quality because they obscure and complicate the codebase,
which leaves it more vulnerable to malicious exploits. This
insight has inspired my research’s creative methodology.

This combines security and quality measures. It becomes
feasible to fully solve security flaws that are ingrained in
badly organized code by doing this. This integrated method
guarantees a more thorough evaluation, resulting in a high-
quality software system that is safe from possible risks
and enhances maintainability and security inside a single
framework.

3. BACKGROUND

Software development has seen an increase in research
in latest years to improve code satisfactory, detect code
smells, and improve safety protocols. Numerous research
works have proposed a huge variety of methods and strate-
gies for figuring out terrible code smells and comparing the
safety and pleasant metrics of software program structures.
With an emphasis on the usage of deep machine mastering,
this segment gives a concise synopsis of the pertinent
statistics at the methods used inside the identity of safety
metrics and code smells.

Early inside the software improvement existence cycle,
researchers and practitioners have realized how vital it’s
far to take proactive steps to locate and fix code-related
problems. To hold software structures strong and reliable,
it is crucial to investigate diverse techniques for detecting
code smells and to assess security metrics. Furthermore,
the mixing of deep device gaining knowledge of into those
detection algorithms has surfaced as a viable method, pro-
viding the possibility of extra particular and powerful code
anomaly identification. The dynamic field of software engi-
neering emphasizes the need of ongoing upgrades to safety
and code satisfactory approaches. Through an exploration
of the nexus of deep machine getting to know, protection
metrics, and code odor detection, this overview seeks to
illuminate the today’s techniques that aid the development
of software program improvement processes. Further inves-
tigation reveals that the secret to resolving the complicated
topics related to code first-class and security inside the ever-
changing subject of software program engineering is the use
of current technologies, along with deep gadget learning.

A. Software Security Metrics

In the context of software system development, address-
ing attack capabilities has become increasingly crucial due
to the growing threat of software assaults. There is growing
agreement that software metrics are useful instruments for
estimating and rating program quality. Metrics can offer
insights that allow the creation of beneficial prediction
fashions, directing the improvement of software program
merchandise, through quantitatively measuring vital aspects
of software systems. Prioritizing security features early
inside the software development manner is the satisfac-
tory route of movement, mainly at some point of the
layout section [3]. It is impossible to overestimate the
importance of protective software towards ability attacks
in the contemporary virtual era, where cyber dangers are
pervasive. Metrics play a role in assessing and forecasting
the overall safety posture and first-rate of software program

https://journal.uob.edu.bh

https://journal.uob.edu.bh

%
A0
>
§% u A

ol
o,k

Baas
998 1”’%%; Hiba M. Yahya and Dujan B. Taha: The Development of the Secure Quality Dataset (SQDS)

structures as they get more complicated. Developers can
also proactively discover vulnerabilities and create sturdy,
resilient software program solutions through methodically
recording and studying metrics.

When properly applied, software metrics serve as a
preventative degree that allows developers to peer any
vulnerabilities early on and deal with them. This technique
improves the software program’s protection whilst also
enhancing the general effectiveness and dependability of the
completed result. Metrics-driven security practices are being
integrated in keeping with the enterprise’s fashionable cir-
culate toward a proactive safety posture, which recognizes
that predicting and stopping vulnerabilities is just as vital
as responding to them.

Furthermore, software metrics’ predictive quality is go-
ing past security problems to provide a radical draw close of
the program’s functionality, maintainability, and scalability.

Development groups might also make properly-
informed selections, use sources wisely, and expedite the
improvement technique with the help of this complete
attitude. In preserving with the idea of “secure by layout,”
safety features are carried out at the layout degree, ensuring
that security concerns are included within the software pro-
gram’s basic structure. The courting among metrics and pro-
tection will become increasingly essential as the software
development panorama adjustments to offer software that
is safe, reliable, and of high best. This paradigm alternate
emphasizes how critical it’s far to take a proactive, metrics-
driven approach to reduce viable risks and make stronger
software systems against usually changing threats. To sum
up, to successfully navigate the troubles presented through
software assaults and guarantee the creation of reliable
and secure software program answers, it’s far important to
incorporate software program metrics as predictive gear and
to adopt safety features early on.

As stated by the National Institute for Using Technology
and Standards to eliminate vulnerabilities Up to thirty
times as much can be saved during the design process as
subsequently fixes, software security metrics are therefore
required to measure the system’s security straight from its
layout. Determining the metrics for software security is
essential to lowering risks and vulnerabilities related to
system security. A single object-oriented class’s security
level may be measured using the security design metrics,
Lower values indicate a more secure program architecture.
The measurements have all been scaled to fall within the
range of 0 to 1. (Therefore, the measurements may be used
to gauge a design’s level of vulnerability.) According to
a certain software security design concept, their findings
indicate whether alternative designs may strengthen or
weaken the security of a given class [21]. Here we give
a definition for each security metric and its equation to find
it [17]:

CIDA: The ratio of the quantity of public characteristics

for a classed instance to the quantity of characteristics in a
class that are categorized.

INCIA|

CIDA =
ICA|

ey

CCDA: The relation of the quantity of public charac-
teristics belonging to a categorized class to the quantity of
characteristics in a class that are categorized.

INCCA]
|CA|

CCDA = 2)

COA: 1t is calculated by dividing all privately shared
methods in a class by all publicly shared methods

INCM|

COA =
ICM|

3

CMALI The relation between the total number of muta-
tors that could potentially interact with characteristics that
are categorized and the number of mutators that actually

could
' X6 a(CAy)

CMAl = ———
[MM |x| CA|

“

CAAI: Measuring the number of accessors that can
interact with the classed characteristics yields the maximum
number of accessors that can have access to those attributes.

_ Z§Z1ﬁ(CAj)

CAAI =
|AM |x| CA

&)

CAIW: The ratio of all possible interactions with part
attributes and all possible pathways to all attributes.

S v(ca))

CAIW = ——«—
ie1 0(A)

(6)

CMW: Equivalent to dividing the number of methods in
a class by the ratio of categorized methods.

CcCM
cauw = <M ™)
M|

B. Code Smell Detection

A crucial component of software program development
is code smell detection, which finds and fixes tough styles
or structures in supply code. These “smells” are signs
and symptoms of viable inefficiencies or design defects
that could decrease the overall exceptional of this system
and make it harder to preserve. Developers may systemati-
cally find positive code smells, which include reproduction
code, prolonged procedures, or inconsistent naming con-
ventions, through utilizing a variety of static code analysis

https://journal.uob.edu.bh

https://journal.uob.edu.bh

¥

A0)

Ll faas

Uy

10 Allgy

Int. J. Com. Dig. Sys. 16, No.1, 995-1006 (Aug-24) - 999

approaches. Enhancing code clarity, maintainability, and
scalability is the fundamental objective of code scent detec-
tion, which facilitates to construct greater dependable and
powerful software structures. As software tasks get more
complex, it’s far essential to discover and put off code
smells early directly to ensure lengthy-term sustainability
and facilitate development crew verbal exchange.

Code smell detection is typically created by predefined
threshold values and grouping metrics of object-oriented,
aimed at identifying the main indications that define the
code smells [22]. A variety of detection approaches rely on
heuristics and detection rules that compare metric values ob-
tained from source code with empirically established thresh-
olds, to differentiate between code artifacts affected by a
particular type of smell and those that are not. The choice
of appropriate threshold values is crucial to the performance
of detectors since it strongly influences their effectiveness.
Hence, identifying suitable typical thresholds is a crucial
factor in developing effective detection strategies. The code
smell that will be used in our research is God class we
can define it as an anti-pattern in software design where a
single class has too much responsibility and becomes overly
complex. It tends to make the code difficult to maintain and
modify. Such a category frequently includes excessive code,
more than one strategy, and tightly coupled dependencies,
main to excessive coupling and coffee concord.

A variety of superior equipment had been created to
help builders pick out code smells, which might be signs
of feasible problems with the software program’s structure
that would reason it to grow to be much less complex or
of worse great. PMD, JDeodorant, and SonarQube are a
few of this gear. SonarQube is a feature-wealthy device
that provides insights on duplicate code and coding stan-
dards breaches similarly to detecting specific code smells.
JDeodorant is specifically made to stumble on code smells.
Checking and provide refactoring answers for them. An-
other famous tool that exams code for diverse horrific
coding behavior, such as empty seize blocks, superfluous
complex expressions, and unneeded variables, is known
as PMD. By addressing and reworking problematic code
structures, these tools help developers improve maintain-
ability, lower error rates, and increase overall program
performance all of which are crucial for sustaining high-
quality codebases [23].

C. Deep Machine Learning

A department of artificial intelligence referred to as
“deep gadget learning” uses sophisticated neural networks
and algorithms to evaluate and study massive amounts of
records. The period “deep” describes the use of numerous
layers of neural networks to investigate input, mainly due
to the introduction of increasingly complicated and correct
models. With this period, system studying will undergo
a revolution as computer systems can be able to find
out patterns, categorize statistics, and generate predictions
which might be greater correct than in advance. Deep

system gaining knowledge of has numerous uses, which
encompass photo identity, predictive analytics, and herbal
language processing [24].

Deep studying’s transformational electricity is tested by
using its potential to routinely extract complicated traits
from statistics, enabling more correct and nuanced decision-
making. We assume a paradigm exchange in numerous
regions as this era develops, along with self-sustaining
structures, economic forecasts, and medical diagnostics.
Because of its versatility and capacity to manipulate difficult
records systems, the deep getting to know framework is a
key component in fixing troubles inside the real interna-
tional.

Furthermore, via incorporating deep studying into disci-
plines like pc vision, advances in object and image detection
have been made, greatly augmenting the electricity of
computerized structures. Another thing of deep learning is
predictive analytics, which helps businesses make statistics-
driven picks by predicting developments and seeing feasible
possibilities and hazards.

Deep getting to know applications depend closely on
herbal language processing, which has advanced to the point
that robots can now understand, interpret, and bring lan-
guage that is similar to that of humans. This will completely
trade the way we engage with technology and feature a
big effect on sentiment evaluation, language translation, and
chatbots.

To sum up, the several uses of deep studying and its
capacity to completely transform a number of sectors high-
light how critical it is to the development of machine getting
to know Deep learning is expected to have a significant
influence on artificial intelligence and redefine the potential
for data-driven decision-making as we move further into
this period of technological progress.

RNNs are a selected form of deep neural network
that is used to deal with sequential records by retaining
contextual knowledge from advance inputs. However, RNNs
have trouble referred to as vanishing gradients, while the
gradients used to replace the network’s parameters grow
to be too tiny and cause the network to cease gaining
knowledge. Traditional feed ahead neural network system
inputs one by one. To address this issue, some RNN
modifications have been proposed, which include LSTM
and GRU, which use greater strategies to manipulate the
input waft via the community. Long Short-Term Memory,
or LSTM, is an RNN architectural kind that is employed
in deep studying. LSTM networks aims to deal with the
standard RNN’s vanishing gradient trouble [25]. With the
addition of specialized additives known as reminiscence
cells. Three gates make up each reminiscence mobile: the
enter, output, and forget gates. These gates will control
the records flow into and out of the reminiscence cell and
decide what information should be remembered and what
should be deleted. The input gate manages the waft of clean

https://journal.uob.edu.bh

https://journal.uob.edu.bh

¥
S5
7N
S O
K’

R

230 AL

1000

Hiba M. Yahya and Dujan B. Taha: The Development of the Secure Quality Dataset (SQDS)

information into the reminiscence cellular, while the output
gate regulates the memory mobile’s output to the network’s
next layer. To determine whether or not statistics have to be
eliminated from the reminiscence cellular, the forget about
the gate is critical [26], [27].

A set of performance measurements that quantify these
algorithms’ efficacy across a range of tasks is essential for
critically evaluating machine and deep learning algorithms
[28].

Accuracy: The percentage of accurate outcomes (true
positives and true negatives) among all instances investi-
gated is known as accuracy.

Tp+TN
TP+FP+TN+FN

®)

Accracy =

Recall: The percentage of true positives that the model
accurately detects.
Tp
Recall = ——— 9
= TPYFN ©
Precision: The percentage of positively identified cases that
were in fact accurate.
Tp
Precision = ————— 10
recision TP+ FP (10)
F1 Score: The harmonic means of recall and accuracy,
which offers a single statistic that strikes a compromise
between the two issues.

F1 Score = 2 Precision X Recall

an

By measuring the proportion of true positives compared
to all positive predictions, precision offers valuable infor-
mation on the dependability of positive class predictions.
Recall, which is another name for sensitivity, quantifies a
model’s capacity to locate each and every pertinent example
in a dataset. When working with class-imbalanced data, the
F1-score provides a balance between recall and accuracy.

*
Precision + Recall

In actuality, the particular needs of the application
determine which measure is best. For example, a high recall
is required if preventing false negatives is important. How-
ever, accuracy becomes more crucial when preventing false
positives is of the utmost importance. By combining these
indicators, analysts and data scientists may enhance and
get a deeper thoughtful of their prediction models, enabling
them to function at their best in practical applications.
The multifaceted method of evaluating the model aids in
optimizing its parameters for increased prediction accuracy
and dependability.

4. METHOD

The proposed dataset SQDS, is being developed through
a methodical procedure that includes many crucial compo-
nents as shown in Fig 1. First stage contained data gathering
from the Qualitas Corpus software repository consist of 74
open-source Java systems will be download. The second

stage we programming a parser examen every system in
this dataset, then preprocess the software to enable the third
stage thorough analysis, we will utilize a specially designed
parser that is designed to methodically examine the classes
included in every software.

Qlllality

Corpus of
Software
.
Parser every
System
. . 4
System -
Preprocessing
Fonata ‘s
4
Calculate God Class
Software Metrics Dataset
s 5 =
Create
sSQDs
'
Data

Using Five ML 4a Preprocessing _

\ 4 - . 4
Calculate Calculate Performance
Accuracy Metric Metrics

Figure 1. The process Stages for Method

The fourth stage contain system preprocessing focuses
on measurable elements like the quantity of public and
private properties and methods within each class and clean-
ing all comments and blank lines from the source code
was being parsed. This required getting rid of everything
extraneous that may have tainted the analysis. In particular,
this is an important step since it guarantees that our analysis
just looks at the code’s functional elements, which improves
the process’s accuracy for detecting code smells.

The final step is to take the parsed code and compute
seven different security metrics. This methodical technique
guarantees a comprehensive evaluation of the security fea-
tures integrated into the software systems.

We want to combine these security measures with the
quality metrics related to same open-source java program
that will be found in Fonata God Class dataset, an extensive
collection of 62 quality indicators, to further enhance the
dataset. Combining the datasets which are shown in Table
I that will be calculated by Fonata and three PhD students

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No.1, 995-1006 (Aug-24) “«

1001

contains quality metrics [23].

TABLE I. Show quality metrics in Fonata’s dataset [23]

Quality Attributes Quality Metrics

CYCLO, WMC, WMCNAMM,

Complexity AMW, WOC, NOP
NOAYV, ATLD
LOC, NOM, NOPK,
size NOCS, NOMNAMM, AMW,
NOA
Cohesion TCC, LCOM
ANOUT, ATFD, FDP,
Coupling RFC, CINT, CC,
CM
Encapsulation LAA, NOAM, XOPA
. DIT, NOI, NOC,
Inheritance

NMO, NIM, NOII

In software development, a system’s resilience and
upkeep are greatly influenced by a number of factors. A
summary of the main traits of high-quality software and
their corresponding effects may be found below [1], [29].

A. Complexity

A measure of how intricately the program is structured,
which can have an impact on mistakes’ probability, read-
ability, and maintainability.

Metrics including Lines of Code, Number of Methods,
Number of Packages, Number of Classes, and Number of
Attribute, measure the dimensions of the software. Size
metrics are indicative of the code quantity and may be used
to estimate undertaking attempt, predict protection fee, and
gauge standard system scalability.

B. Size

Describes the size of the program, usually expressed as
the number of functions and classes or lines of code [30].

Metrics including Lines of Code, Number of Methods,
Number of Packages, Number of Classes, and Number of
Attributes, measure the dimensions of the software. Size
metrics are indicative of the code quantity and may be used
to estimate undertaking attempt, predict protection fee, and
gauge standard system scalability.

C. Cohesion

Is a measure of how well a module’s components fit to-
gether; more cohesion is preferable for maintainability [31].
Tight Class Cohesion and Lack of Cohesion in Methods are
concord metrics. Cohesion refers to the degree to which
factors inner a module belongs together. High brotherly
love inside a module usually indicates a better design which
makes the software easier to preserve and understand.

D. Coupling

Indicates how dependent one module is on the others;
low coupling is ideal to lessen the effect of changes to one
module on the others [32].

Coupling is measured using the following metrics:
Afferent Coupling, Coupling Complexity, Foreign Data
Providers, Response For a Class, Coupling Intensity), and
Coupling between Methods. A system with a lower coupling
is better since it means that its parts are less interdepen-
dent, which improves modularity and lowers integration or
change risks.

E. Encapsulation

Encapsulation: the procedure of limiting access to a
class’s internal operations in order to maintain integrity and
avoid accidental interactions.

A system’s usage of encapsulation is assessed by metrics
like exchange of Private Access, Number of Accessor Meth-
ods , and Locality of Attribute Accesses. A well-designed
encapsulation helps to defend against changes in external
components and lessens system fragility by concealing the
internal states and functions of one component from others.

E Inheritance

a feature of object-oriented programming that encour-
ages reuse by having a class inherit behaviors and attributes
from a parent class.

Metrics that evaluate the application’s usage of in-
heritance include Depth of Inheritance Tree, Number of
Children, Number of Methods Overridden, Number of
Inheritances Number of Inherited Methods, and Number
of Immediate Subclasses. While polymorphism and code
reuse can be enhanced by the appropriate use of inheri-
tance, overuse of inheritance can result in complicated and
difficult-to-maintain code.

Our method ambitions to generate a extra comprehen-
sive and nuanced view of the software program structures
underneath exam by using fusing security signs with an
established great dataset.

This mixture allows for a extra thorough evaluation
that takes into account factors of usual code pleasant in
addition to safety. It is predicted that the ensuing SQDS
dataset might be a useful device for each practitioners and
pupils, presenting insights into the complicated interactions
that exist between security and excellent measures in open-
source Java structures. This venture is in line with the
overarching objective of enhancing dataset richness and
enabling more reliable analyses inside the fields of security
research and software engineering.

With 420 rows and 68 columns that suggest numerous
attributes, the SQDS dataset has an in-depth shape. The
information then goes thru second level of preprocessing
thorough training technique was used to keep the caliber

https://journal.uob.edu.bh

https://journal.uob.edu.bh

¥
S5
"IN
S O
K’

)

410 Alisy;

1002

Hiba M. Yahya and Dujan B. Taha: The Development of the Secure Quality Dataset (SQDS)

of our system mastering fashions before the dataset became
prepared for gadget getting to know analysis. The managing
of missing records and the elimination of incomplete rows
have been important steps in this procedure.

To preserve the accuracy, completeness, and represen-
tativeness of the records used to train our system mas-
tering fashions, this method is crucial. To lessen biases
and mistakes in the system gaining knowledge of manner
and boom the validity of our conclusions, such cautious
data curation is vital. A vital preprocessing step that is
designed to convert unprocessed information into a layout
that can be analyzed. To do that, the statistics need to
be carefully wiped clean to get rid of any lacking values
and any adjustments together with scaling or normalization.
This kind of preprocessing is crucial because it improves
the general efficacy and quality of the records analysis that
follows, generating effects which might be more particular
and straightforward. Preprocessing is essential to providing
a strong basis for our study. Together, they strengthen our
methodological foundation and guarantee that all ensuing
analyses whether algorithmic or manual are based on the
best possible and most consistent data.

To identify code smells and assess the software’s secu-
rity, we employ five different machine learning techniques:
Decision Tree, Random Forest, SVM, KNN, and Logistic
Regression. A careful division of the dataset into training
and testing sets is made. Models are trained on the assigned
training set during the training phase, and their performance
is evaluated using the testing set. Strict assessment is
essential to guaranteeing the model’s effectiveness. This
paper presents a technique that compares the effectiveness
of two methods for identifying security flaws and code
smells.

Three deep machine learning algorithms (RNN, LSTM,
and GRU) are applied to the unique Fonata dataset in
addition to our recommended SQDS dataset to similarly
deepen the scope of our studies. The use of deep learning
strategies holds the capability to reveal complicated patterns
and subtleties gift in the datasets, therefore advancing a
comprehensive comprehension of code first-class and secu-
rity in software program systems. The thorough evaluation
of these models and procedures is important to pushing
software engineering and protection research forward and
offers insightful facts to both scholars and practitioners.

5. THE RESULT

This study uses of regular accuracy overall performance
standards generated from the confusion matrix to assess the
efficacy of the SQDS. An essential method for evaluating a
version’s performance in category is the confusion matrix.

Its paperwork the muse for several performance in-
dicators through methodically classifying predictions into
proper positives, actual negatives, false positives, and fake
negatives. A key indicator referred to as accuracy evaluates
how correct the model’s predictions are universal. The ratio

of efficaciously anticipated times to all occurrences in the
test dataset is used to compute it. Recall evaluates the
model’s ability to trap each high-quality occasion, whereas
precision examines the accuracy of high-quality predictions.
An unbiased assessment is given by the F1 rating, that is the
harmonic imply of consider and accuracy. The investigation
also explores specificity and sensitivity, which center on
as it should be figuring out negative and fine examples,
respectively.

A thorough information of the accuracy performance
of each of the 5 machine studying strategies (Logistic Re-
gression, Decision Tree, Random Forest, SVM, and KNN)
is provided by way of the performance analysis, which is
displayed in Table II and Fig. 2., through near examination
of these metrics, researchers may also gain valuable insights
into the benefits and downsides of each model, helping
inside the identity of the first-rate method for code smell
detection and protection assessment.

TABLE II. The accuracy performance metrics for five machine
learning

Machine learning ~ Accuracy
Logistic recognition ~ 0.9365
Decision tree 0.9683
Random forest 0.9783
SVM 0.9683
KNN 0.9603

The examine additionally seems at the results of false
positives and fake negatives due to the fact those occur-
rences are critical in practical applications. While fake
negatives can offer critical protection troubles, fake positives
may bring about useless moves or alarms.

Practitioners gain a deeper information of the fashions’
practical software by using comprehending the subtleties of
those measures.

Accuracy of Machine Learning Madels

I I N
Decisi ree fest SVM KNN

M

. .
0.90

Logistic Regresskon

Model

Figure 2. Accuracy of machine learning used

A key element of the entire evaluation procedure is

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No.1, 995-1006 (Aug-24) ‘.

1003

the accuracy overall performance evaluation, which ensures
a radical appraisal of the SQDS’s capacity to hit upon
code smells and verify software program security. The
studies performed yield treasured insights that resource in
the improvement of machine learning fashions and sell
ongoing development inside the fields of protection research
and software engineering. These performance measures
offer useful benchmarks as the have a look at progresses,
pointing practitioners and lecturers within the course of
greater dependable and green model deployment in sensible
conditions.

In this study, we aimed to use five ML algorithms:
decision tree, logistic regression, random forest, KNN, and
SVM. The classification accuracy results of different algo-
rithms are as follows: logistic regression (93.65%), decision
tree (96.83%), random forest (96.83%), SVM (96.83%) and
KNN (96.03%) these values represent the overall predictive
ability of the models. High accuracy scores in all models
indicate that the selected features, together with safety and
quality considerations, provide sufficient information for
effective classification Especially the decision tree, random
forest, and SVM models consistently showed outstanding
performance and achieved an accuracy rate of 96.83%
consistently This showed a strong ability to distinguish
between classes in the data set.

Comparing the results, we find a small difference in
accuracy between Decision Tree, Random Forest, and SVM,
with KNN lagging slightly behind. The logistic regression,
although slightly lower in accuracy, achieved a commend-
able 93.65%. This variation highlights the various strengths
and weaknesses of each algorithm when applied to this
particular data set.

After, that we applied 3 deep machine mastering (RNN,
LSTM, and GRU) on both the original Fonata’s dataset of
God Class bad smell and then calculated the performance
metrics (accuracy, precision, consider, and F1-rating). Table
IIT indicates the performance analysis for 3 models while
the use of God Class terrible odor with quality metrics.

TABLE III. The performance metrics for (RNN, LSTM and GRU)
on Fonata’s God class dataset

The
performance Precision Recall Accuracy F1 _score
Metrics
RNN 0.90 0.87 0.85 0.88
LSTM 1 0.85 0.90 0.92
GRU 1 0.89 0.93 0.94

Then, we analyzed our counseled SQDS dataset which
become supposed to perceive the God Class code scent the
usage of 3 deep device gaining knowledge of models: Gated
Recurrent Unit (GRU), Long Short-Term Memory (LSTM),
and Recurrent Neural Network (RNN). To determine the
efficacy of those fashions, performance indicators consisting

of accuracy, precision, do not forget, and Fl-score had
been calculated. Table IV gives the findings of this overall
performance research, which included God Class code
heady scent detection together with fine metrics. The desk
offers a precis of each deep mastering version’s performance
in figuring out complex styles related to the God Class
code odor whilst contemplating greater standard software
nice considerations. In Fig. 3 we draw a chart contain the
comparison between the deep machine learning with the
performance metrics on our suggested SQDS dataset.

TABLE IV. The performance metrics for (RNN, LSTM and GRU)
on proposed SQDS dataset

The
performance Precision Recall Accuracy F1 score
Metrics
RNN 1 0.85 0.90 0.95
LSTM 1 0.96 0.97 0.98
GRU 1 0.93 0.95 0.96

Comparison of RNN, LSTM, and GRU across Different Metrics
R RNN
LSTH
0,975 - GRU

1.000

0.950
0.825
;
} 0.900
0875
0.850

0.825

0.800 Accuracy Recall

Metric

F1 Score

Figure 3. Comparison deep machine learning across different per-
formance metrics

6. DISCUSSING THE RESULT

This work highlights the significance of dataset design
and choice in impacting model outputs in addition to
exploring the performance of deep getting to know models
in the context of God Class code smell detection. The
outcomes pave the way for upgrades in software engineering
strategies and the creation of extra dependable and powerful
tools for code best and maintainability. They additionally
upload to the continuing dialogue on efficient methods for
code smell detection.

Results for the RNN technique show a extensive im-
provement in accuracy, from 0.90 to one, as visible in
Table III. This significant increase demonstrates RNN’s
capability to efficaciously stumble on first rate code even
because it decreases fake positives. Additionally, the RNN
method continually performs properly, demonstrating sturdy
recollect and F1 rating, demonstrating its dependability in

https://journal.uob.edu.bh

https://journal.uob.edu.bh

2,

%
%y

< s

1004

Hiba M. Yahya and Dujan B. Taha: The Development of the Secure Quality Dataset (SQDS)

figuring out God Class code smells. The comprehensive
performance metrics take a look at for 3 exceptional re-
current neural community version sorts (LSTM, RNN, and
GRU) focuses on their effectiveness in identifying God
Class code odors, and is shown in Table III and IV. The
evaluated metrics offer a complete view of the fashions’
usual performance. Analyzing the LSTM approach, the
observer diagnosed many brilliant advantages. With incred-
ible accuracy, the LSTM model predicts God Class code
smells, indicating a higher chance of accuracy. Moreover,
the LSTM technique continues high stages of don’t forget,
accuracy, and F1 rating while demonstrating regular and
dependable performance across several parameters.

Like the LSTM version, accuracy and recall measure-
ments are analyzed to show how powerful the GRU ap-
proach is in God Class code scent detection. The GRU
approach shows that it’s miles a reliable solution for this
dataset based on its competitive accuracy and F1 score,
highlighting its trendy efficacy and adaptableness for God
Class code scent detection. The consequences of those
performance metrics shed mild at the distinct advantages
of each recurrent neural network version and permit re-
searchers and practitioners attempting to find powerful
strategies for God Class code odor popularity with valuable
records. The nuances shown inside the accuracy, take into
account, and normal performance signs offer a nuanced
information of the models’ talents and may guide the choice
of the high-quality suitable approach, relying on precise
task demands and targets. Using the proposed SQDS dataset
and three deep machine studying models, we discover some
fascinating dispositions that provide important insights into
the relative effectiveness of each method for detecting God
Class code smells when we examine our findings with the
previous studies.

The SQDS dataset shows that the RNN technique is
completely accurate, suggesting that RNN can reliably
assume God Class scents. Furthermore, the F1 scores and
balanced metrics reminiscence, for instance, display how
reliable the RNN version is in this situation and showcase
how properly the SQDS dataset can Finally, the SQDS
dataset highlights strong overall performance characteristics
in the GRU technique, establishing GRU as a straightfor-
ward model for God Class heady scent category because of
its extremely good accuracy and memory. The GRU model’s
applicability for the SQDS dataset is highlighted by using
the balanced metric technique, which in addition guarantees
a appropriate equilibrium between version accuracy and F1
score. In software engineering, figuring out code smells is a
crucial first step in achieving the great viable code pleasant
and maintainability. The ”God Class” is particularly top
notch amongst those code smells because it has a tendency
to tackle too many obligations, which would possibly have
an effect on the complete program. The complex insights
received from these studies help to pressure the continuing
search for better code smell detection strategies, which in
turn improves the general satisfactory and maintainability of

software program systems as the sector of software program
engineering develops.

In this have a look at, the complex problem of identi-
fying God Class code smells became tackled using 3 fa-
mous deep gaining knowledge of models: Recurrent Neural
Network, Long Short-Term Memory, and Gated Recurrent
Unit. Two specific datasets were used in the research: the
unique dataset, which was taken from Fonata’s huge series
and contained the essence of God Class scents, and the
proposed dataset, SQDS, which combined protection and
satisfactory metrics for a more thorough evaluation.

The evaluation of these fashions in contrast discovered
vital records approximately their consistency, the impact of
the dataset, and elements to be taken into account when
selecting a version. Notably, LSTM finished admirably in
terms of precision, take into account, accuracy, and FI
rating, displaying extraordinary consistency at some stage
in the 2 datasets.

Because of its constancy, LSTM is placed as a robust
competitor for God Class fragrance identification, demon-
strating its adaptability and dependability across hundreds
of dataset instances. The SQDS dataset made it clear
how dataset competencies affected model performance. The
overall performance of each model changed into progressed
via including protection and great metrics to SQDS. This
emphasizes how crucial dataset houses are in identifying
how deep studying models are educated and evaluated.
The capability of the SQDS dataset to decorate the fash-
ions’ fundamental general overall performance highlights
the importance of a nuanced dataset layout that takes
into consideration the diverse aspects of software program
protection and fine.

When deciding on a really perfect version, the look
at results emphasize that the choice must be made on
the mission’s unique necessities and desires. Regarding
accuracy-focused applications, RNN and LSTM are also
outstanding alternatives. Nonetheless, LSTM seems to be
the nice alternative if a excessive degree of regular average
overall performance and harmony among keep in mind and
precision are required. This brand-new know-how offers
researchers and practitioners insightful course, empowering
them to personalize their version picks to the ideal wishes
in their tasks.

In our paintings, version interpretability is vital as it
offers transparency to our gadget learning techniques, which
in flip builds self-perception and comprehensibility.

We have placed strategies into vicinity to make our
models’ selection-making system more obvious. As a part
of this, feature importance is analyzed to decide which code
factors have the most consequences on code smell predic-
tion. Furthermore, techniques like layer weight evaluation
shed mild on how neural networks behave in our deep
getting to know models. In software program engineering,

https://journal.uob.edu.bh

https://journal.uob.edu.bh

Int. J. Com. Dig. Sys. 16, No.1, 995-1006 (Aug-24) “«

1005

interpretability is critical for both sensible software and
educational rigor. In this field, understanding the “why”
at the back of a model’s forecast is simply as critical
because the prediction itself. Our models are not simplest
opaque systems; as an alternative, they are devices that offer
treasured and explainable outcomes.

7. CONCLUSION

1y

2)

3)

4)

The SQDS dataset’s inclusion of security and quality
metrics acted as a catalyst to enhance the models’
ability to identify God Class code smells. This
highlights how crucial it is to evaluate software holis-
tically, accounting for all pertinent aspects, to ensure
more accurate and consistent model performance.
The machine learning models utilized in this ex-
tensive investigation have proven to be very accu-
rate in their ability to categorize datasets according
to conservation efficiency metrics. SVM, random
forests, and decision trees fared better than the
others, demonstrating the value of machine learning
as a tool for classifying and assessing systems that
prioritize quality and safety requirements. These
findings provide a thorough understanding of the
interaction between quality and safety concerns and
demonstrate the viability of using machine learning
techniques for thorough system assessments.

The deep machine learning models RNN, LSTM,
and GRU did a good job at identifying God Class
code smells using both datasets. Nonetheless, it was
evident that LSTM consistently outperformed RNN
and GRU in God Class scent detection, showing
superior overall performance.

When this comparison method is used for the specific
task of locating complicated code smells, it offers
valuable insights into the capabilities and advantages
of different deep-learning models. The SQDS dataset
was crucial in enhancing the overall performance of
the machine learning models and emphasizing the
necessity of including safety and quality require-
ments during the training phase.

8. Furure WoRKS

1))

2)

3)

4)

Create other datasets related to different bad smells
such as Feature Envy, long methods and Data Class,
with Quality metrics.

Using other machine learning algorithms on the
SQDS, or hybrid between ML and DL to enhance
the performance.

Combine these Datasets to detect more than bad
smells at the same time in the code of software.
Using techniques of refactoring after calculating the
security metrics to enhance the security and quality
of software. So, this will help the developers in
software engineering.

This work lays the groundwork for further research projects
to deepen our understanding of software evaluation and

code scent detection. To ensure that the code is beauti-
ful, preservable, and maintainable, the gadget mastering
is expected to be more reliable and appropriate due to a
combination of research on different bad smells and creative
models.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

S. Wagner, Software product quality control.
Springer, 2013.

Berlin, Heidelberg:

S. Lipner, “Security development lifecycle: Security considerations
for client and cloud applications,” Datenschutz und Datensicherheit-
DuD, vol. 34, no. 3, pp. 135-137, 2010.

J. Daley, “Insecure software is eating the world: Promoting cyberse-
curity in an age of ubiquitous software-embedded systems,” Stanford
Technology Law Review, vol. 19, no. 3, 2017.

W. Jansen, Directions in security metrics research.
Diane Publishing, 2010.

Darby, USA:

N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood,
“Exploring software security approaches in software development
lifecycle: A systematic mapping study,” Computer Standards &
Interfaces, vol. 50, pp. 107-115, 2017.

M. Fowler, Refactoring: improving the design of existing code.
Boston, USA: Addison-Wesley Professional, 2018.

A. Kaur and G. Dhiman, “A review on search-based tools and
techniques to identify bad code smells in object-oriented systems,”
in Harmony Search and Nature Inspired Optimization Algorithms:
Theory and Applications, ICHSA 2018. Springer, 2019, pp. 909—
921.

M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in deep
learning. Singapore: Springer, 2020.

E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The qualitas corpus: A curated collection
of java code for empirical studies,” in 2010 Asia pacific software
engineering conference. Sydney, NSW, Australia: IEEE, 2010, pp.
336-345.

M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature review
and meta-analysis,” Information and Software Technology, vol. 108,
pp. 115-138, 2019.

T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, I. Vats, H. Moazen,
and F. Sarro, “A survey on machine learning techniques for source
code analysis,” arXiv preprint arXiv:2110.09610, 2021.

G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code
smells and refactoring: A tertiary systematic review of challenges
and observations,” Journal of Systems and Software, vol. 167, p.
110610, 2020.

F. A. Fontana and M. Zanoni, “Code smell severity classification
using machine learning techniques,” Knowledge-Based Systems, vol.
128, pp. 43-58, 2017.

S. Subedi, “Intelligent code smell detection system using deep learn-
ing,” Master’s thesis, Institute of Engineering, Pulchowk Campus,
Nepal, 2021.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

1006

i

)

K

410 Alisy;

-
e

¢
1"”4'~<j Hiba M. Yahya and Dujan B. Taha: The Development of the Secure Quality Dataset (SQDS)

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “On the
feasibility of transfer-learning code smells using deep learning,”
Journal of Systems and Software, vol. 176, p. 11093, 2019.

A. Alazba, H. Aljamaan, and M. Alshayeb, “Deep learning ap-
proaches for bad smell detection: a systematic literature review,”
Empirical Software Engineering, vol. 28, no. 3, p. 77, 2023.

B. Alshammari, C. Fidge, and D. Corney, “Assessing the impact
of refactoring on security-critical object-oriented designs,” in 2010
Asia Pacific Software Engineering Conference. Sydney, NSW,
Australia: IEEE, 2010, pp. 186-195.

A. Almogahed, M. Omar, N. H. Zakaria, and A. Alawadhi, “Soft-
ware security measurements: A survey,” in 2022 International Con-
ference on Intelligent Technology, System and Service for Internet
of Everything (ITSS-IoE). Hadhramaut, Yemen: IEEE, 2022, pp.
1-6.

L. Bamizadeh, B. Kumar, A. Kumar, and S. Shirwaikar, “An
analytical study of code smells,” Tehnicki glasnik, vol. 15, no. 1,
pp. 121-126, 2021.

A. Bahaa, A. E.-R. Kamal, and A. S. Ghoneim, “A systematic
literature review on software vulnerability detection using machine
learning approaches,” FCI-H Informatics Bulletin, vol. 4, no. 1, pp.
1-9, 2022.

P. K. Manadhata and J. M. Wing, “An attack surface metric,” I[EEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 371-386,
2010.

U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-
objective code-smells detection using good and bad design exam-
ples,” Software Quality Journal, vol. 25, pp. 529-552, 2017.

F. Arcelli Fontana, M. V. Mintyld, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning techniques for
code smell detection,” Empirical Software Engineering, vol. 21, pp.
1143-1191, 2016.

M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in deep
learning. Singapore: Springer, 2020.

F. Mortezapour Shiri, T. Perumal, N. Mustapha, and R. Mohamed,
“A comprehensive overview and comparative analysis on deep

learning models: Cnn, rnn, Istm, gru,” arXiv e-prints, p. 2305, 2023.

A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep
learning,” arXiv preprint arXiv:2106.11342, 2021.

A. Aksoy, Y. E. Ertiirk, S. Erdogan, E. Eyduran, and M. M.

[28]

[29]

[30]

[31]

[32]

Tariq, “Estimation of honey production in beekeeping enterprises
from eastern part of turkey through some data mining algorithms,”
Pakistan Journal of Zoology, vol. 50, no. 6, 2018.

V. M. Patro and M. R. Patra, “Augmenting weighted average with
confusion matrix to enhance classification accuracy,” Transactions
on Machine Learning and Artificial Intelligence, vol. 2, no. 4, pp.
77-91, 2014.

A. Almogahed, H. Mahdin, M. Omar, N. H. Zakaria, Y. H. Gu,
M. A. Al-Masni, and Y. Saif, “A refactoring categorization model
for software quality improvement,” Plos one, vol. 18, no. 11, p.
€0293742, 2023.

M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. New Jersey, USA: Prentice-Hall, Inc., 1994.

W. J. Brown, R. C. Malveau, H. W. McCormick III, and T. J. Mow-
bray, “Refactoring software, architectures, and projects in crisis,”
Google Scholar Google Scholar Digital Library Digital Library,
1998.

R. Marinescu, “Measurement and quality in object-oriented design,”
Ph.D. dissertation, University of Timisoara, Timisoara, Romania,
2002.

Hiba Muneer Yahya Assistant Lecture in
software Department and PhD Student in
Computer Sciences. Computer science and
Mathematics Collage, University of Mosul,
Mosul, Iraq.

Dujan Basheer Taha Prof in Department of
Computer Science, Computer Sciences and
Mathematics Collage, University of Mosul,
Mosul, Iraq.

https://journal.uob.edu.bh

https://journal.uob.edu.bh

	INTRODUCTION
	RELATED WORK
	BACKGROUND
	Software Security Metrics
	Code Smell Detection
	Deep Machine Learning

	METHOD
	Complexity
	Size
	Cohesion
	Coupling
	Encapsulation
	Inheritance

	THE RESULT
	DISCUSSING THE RESULT
	CONCLUSION
	Future Works
	References
	Biographies
	Hiba Muneer Yahya
	Dujan Basheer Taha

