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Abstract: The presence of outliers in data often disrupts modeling results, especially in population clustering and behavioral analysis.
Although there are various clustering algorithms that are robust to outliers, such as DBSCAN and t-SNE, K-Means still has challenges
in dealing with them. This paper introduces an optimized K-Means LTS algorithm, which incorporates Least Trimmed Square technique
to reduce outliers after clustering process. The outlier trimming process occurs after the clustering process, allowing for trimming within
each cluster. This algorithm will be compared with K-Means and Robust Trimmed K-Means (RTKM), which both use outlier pruning.
The comparison of these three algorithms will consider performance metrics using Silhouette Score and Davies-Bouldin Index, also the
run time processes. As a result, K-Means LTS is consistently shown to perform better than K-Means and RTKM when implemented on
ten various datasets. In the future, there may be further developments related to determining the best percentage for trimming outliers.
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1. INTRODUCTION
Outliers present a notable challenge in data analysis

and model development by significantly deviating from
expected data norms [1]. They stand out distinctly within
a dataset, impacting the modeling process and leading to
suboptimal results. For instance, in a set of student grades
like 60, 60.5, 62, 61, 63, 60, and 0.01, the value 0.01
is an outlier. Detecting and handling outliers is a topic
widely discussed in various journals, with many clustering
algorithms like DBSCAN, LDOF, t-SNE, and K-Medoids
being utilized to address outliers alongside clustering tasks.

Clustering modeling is a robust method for directly
pinpointing outliers by grouping similar data points into
clusters. An outlier is then identified if it significantly
differs from its cluster. Although models like K-Means
may not handle outliers optimally, they can still effectively
detect them [2]. Research in 2023 [3] has explored han-
dling outliers in clustering using methods like the Robust
Spectral Clustering Algorithm, which utilizes sub-Gaussian
random variables to enhance outlier detection. However,
such studies often involve a limited number of datasets for
implementation.

This article proposes a novel algorithm by implementing
the Least Trimmed Square (LTS) algorithm after performing
clustering using K-Means, which will be called K-Means

LTS. The LTS concept is applied by trimming the largest
squared residuals on the cluster generation. This process
involves sorting the distances of each data point from its
centroid, and removing the data with furthest distance at an
optimal percentage. The optimal percentage is determined
through iterative experimentation. If a cluster trimmed at
a certain percentage achieves the highest silhouette score
during the iteration, that percentage is chosen. While ex-
isting literature employs LTS as inspiration for trimmed
K-Means algorithms [4], [5], [6], which trim the farthest
points during centroid and cluster calculations, the use
of LTS in the proposed method has not been explored
before. By employing outlier trimming based on centroid
distance using LTS as a preprocessing step in the K-
Means framework, K-Means LTS achieves robust clustering
outcomes.

The method proposed here bears resemblance to the
trimmed K-Means algorithm or RTKM, where the LTS
concept serves as inspiration and is integrated into the
clustering methodology. LTS guides the preprocessing steps
by organizing the clustering results dataset per cluster and
trimming the largest data points identified as outliers in
the K-Means algorithm. The sorting of residuals in the K-
Means LTS algorithm involves arranging the most distant
points from the cluster centroid, followed by trimming these
points based on a specified percentage. Therefore, we will
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compare the use of K-Means as a control algorithm with
trimmed K-Means to handle datasets with significant out-
liers, and we will also compare it with the novel algorithm
we introduce, K-Means LTS. Through experiments, result
analysis, and time performance evaluations, this article aims
to demonstrate and discover a more effective algorithm for
forming clusters in the presence of outliers.

This article is structured as follows: Section 2 explores
Related Works, providing a review of existing literature
to establish context and identify research gaps. Section 3
details the chosen clustering algorithm, evaluation metrics,
and other methodologies employed. In Section 4, Experi-
ment and Analysis, we present datasets, preprocessing steps,
and optimization details. Section 5, Result and Discussions,
showcases outcomes through evaluation metrics and visu-
alizations, accompanied by an in-depth analysis. Finally,
Section 6, Conclusion and Future Works, summarizes find-
ings, discusses implications, and suggests directions for
future research, ensuring a comprehensive exploration of
clustering methodologies and their applications.

2. RELATED WORKS
In the dissertation entitled “Robust Approaches for

Unsupervised Learning”, the researchers extensively dis-
cuss the modification of the K-Means clustering model,
making it more resilient to outliers, referred to as Robust
Trimmed K-Means (RTKM) [7]. RTKM offers a structure
for identifying outliers and clustering points concurrently
within one objective function. Its algorithmic design allows
flexibility for use with both single- and multi-membership
data. RTKM sidesteps the challenges of explicitly defining
outlier measures and enhances the effectiveness of model
space exploration for uncovering clusters and outliers. In
addition to the discussion on RTKM, in his dissertation he
describes other methods such as STKM or Spatio-Temporal
K-Means as other examples of robust methods.

Another research paper from 2019 mentions that
Trimmed C-Means and Trimmed K-Means implement LTS
criteria within them. This journal entitled “A unified ap-
proach for cluster-wise and general noise rejection ap-
proaches for k-means clustering” implements LTS only
conceptually in its trimming, not incorporating the LTS
method as a pre-processing step, as seen in the previous
journal [6]. Similar to how Trim C-means incorporates the
LTS criterion to mitigate the impact of noisy objects, one
can diminish the influence of noise by excluding objects
that are far away from any cluster. Ikotun, in a journal
utilizing the Systematic Literature Review (SLR) method
summarizing K-Means Clustering-related journals [8], notes
that many journals discuss the workings of Robust K-
Means. Some K-Means types address outliers by discarding
them during the iteration of cluster centroid determination.
Ikotun also explains journals that explore K-Means by
combining Tukey Rule and a new distance metric formula
[9]. The algorithm is modified to eliminate outliers before
finding cluster centroids, resulting in improved accuracy and

convergence.

There is another journal discussing the use of single-
linked clustering algorithms focused on identifying elon-
gated clusters and ultimately finding inliers reflecting ma-
jority patterns or patterns matching the data [10]. Moreover,
this journal employs Least Square (LS) and Least Trimmed
Square (LTS) as comparative estimators. This topic turns
out to be still frequently discussed if seen from 2006 until
now there are still many researchers who discuss clustering
models that are resistant to outliers. Trimmed K-Means
is an algorithm inspired by the trimming concept in LTS
and Minimum Covariance Determinant (MCD) according to
Rousseuw’s journal [11] with the title ”Anomaly detection
by robust statistics”. It explains that trimming in K-Means
minimizes the sum of squared distances between observa-
tion objects (subsets) and group averages. The algorithm
broadly utilizes the concept of C-steps for each iteration,
similar to FastMCD. Through these previous journals, they
inspire us to explore new algorithms to identify outliers
in each cluster formed in K-Means, making the clustering
results more robust without requiring high computing re-
sources like existing algorithms.

3. METHODS
This section succinctly outlines the chosen clustering

algorithm, evaluation metrics, and any supplementary tech-
niques employed in the study. It offers a non-technical
overview of the technical approach adopted for assessing
algorithm performance, providing readers with a clear un-
derstanding of the research methodology. In Figure 1, we
present the research framework, offering a clear visual guide
to the theoretical and methodological aspects of our study.

A. K-Means
The K-Means Clustering algorithm is the most renowned

algorithm in unsupervised learning. Not only is it fast in
convergence, but K-Means is also easy to understand and
performs well on large datasets. K-Means clustering is
categorized as a partitioning algorithm that divides data into
specific groups or clusters [7]. The partitioning algorithm
determines the number of groups from the beginning and
iteratively relocates between groups to become more cen-
tralized or converge [12]. The objective of this algorithm is
to minimize the average Euclidean distance of each sample
from the cluster center (centroid) [13], where Euclidean
distance is used when assigning a data point to a cluster,
considering the distance between the i-th data point (xi) and
the i-th cluster center (ci).

d(x, c) =

√√ n∑
i=1

(xi − ci)2 (1)

By using the K-Means Clustering algorithm, various
information can be obtained, such as web keyword sources
[14], image segmentation [15], customer segmentation iden-
tification in a company [16], and much more. However,
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Figure 1. Research Framework

a drawback of this renowned algorithm is its inability to
handle datasets with a large number of outliers. Therefore,
the K-Means clustering results will serve as the control in
this article, to be compared with the modified version of
the K-Means algorithms.

B. Trimmed K-Means
The Least Trimmed Squares (LTS) estimator is a mod-

ification of the Least Square (LS) estimator in linear re-
gression, designed to be robust against outliers by finding
regression coefficients that minimize the sum of squares (the
difference between observed and model-predicted values).
Least Trimmed Squares (LTS) is a concept proposed by
Rousseew in robust regression modeling susceptible to
outliers as an estimator for linear coefficient [17]. Very
similar to LS, the only difference in LTS is that the largest
squared residuals are not used in summation, preventing the
model from being affected by outliers.

Minimize
h∑

i=1

(r2)i:n

Where(r2)1:n ≤ ... ≤ (r2)n:n

(2)

The primary application of LTS is in linear regression
models, where the squared residuals of predictions and
actual values are sorted in ascending order, and trimming
is performed on the largest squared residuals of the model.
By estimating a robust linear model using LTS, data points
with the largest residuals are considered outliers. LTS has
been implemented in clustering algorithms, both in hard
clustering and fuzzy clustering. LTS inspires these algo-
rithms to trim the farthest data points (Trimming Approach).
The Trimmed K-Means algorithm is a modification of the
K-Means algorithm, implementing the concept of Least
Trimmed Squares in each iteration of the cluster search until
the convergence condition is met. The trimming concept
from LTS inspires the trimming process in Trimmed K-
Means, in the univariate context, demonstrating their sim-
ilarity in seeking robust locations against outliers [18]. In
this algorithm, determining clusters involves not only least
squares (LS) but also cutting unnecessary values (trimming
approach) [5]. Therefore, the main step that distinguishes
Robust Trimmed K-Means is the selection of a separate
subset (trimming). In this step, points with the largest
residuals (which may be outliers) are removed from the
dataset or ignored in the next iteration. This concept is
inspired by LTS. With the subset of data after trimming,
the algorithm iterates between points again, updating cluster
labels and cluster centers based on the remaining data until
convergence.

In this study, we will utilize the Robust Trimmed K-
Means (RTKM) algorithm [19], for which the code is
accessible on GitHub. This algorithm is based on a robust
relaxed formulation of the weighted K-Means algorithm,
where the classification weight matrix can take on a range
of values within [0, 1], as opposed to being restricted to the
binary set 0, 1. This relaxation provides a method for mon-
itoring the degree of membership of a point to each cluster
during each iteration, eliminating the need for explicitly
defining a measure of ”outlierness.” In the construction of
the RTKM model, there is no unsupervised determination
of the optimal K value and outlier trimming percentage,
and this process will be performed in the proposed model,
K-Means LTS.

C. K-Means LTS
In theory, LTS can be used as a preprocessing algorithm

where the LTS estimator is employed to detect outliers
before running the clustering algorithm. This process does
not modify the clustering algorithm but enhances its ro-
bustness by processing outliers beforehand. Therefore, the
application of LTS in clustering modeling can make the
model more resilient to outliers, a preprocessing step that
will be discussed in this article.

The proposed method shares similarities with the
trimmed K-Means algorithm or RTKM algorithm, where
the LTS concept inspires and is applied to the clustering
method. LTS inspires the proposed preprocessing in this
article by sorting the clustering result dataset per cluster
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and trimming the largest data points estimated as outliers
in the K-Means algorithm. The sorting of residuals in the
K-Means LTS algorithm will be performed by arranging
the farthest distances to the formed cluster centroid. Subse-
quently, trimming the farthest points will be executed based
on a certain percentage (n percent). This means that if the
data belongs to the top n percent of the furthest distance
from the centroid in the cluster, it will be trimmed from the
cluster result. The search for the optimal trimming percent-
age will be done in an unsupervised manner, eliminating the
need for multiple trials [4]. However, it will be needed to set
the maximum threshold of the trimming percentage on the
experiment (maximum trimmed percent). The algorithm
proposed for determining the optimal trimming percentage
is based on the largest evaluation metric result, namely the
silhouette score, calculated from the each cluster of trimmed
data (inliers data). This algorithm will save the best sil-
houette score and best trimming percentage to be analyzed
and presented in Section 5. For the algorithm’s pseudocode
proposed for this method, please refer to Table I.

The algorithm’s complexity is manageable, as it follows
a straightforward procedure outlined in Table I. By utilizing
quicksort for distance calculation and simple arithmetic
operations for outlier trimming, the implementation process
is relatively straightforward. First, during initialization, cen-
troids are set and cluster IDs are assigned, with a complexity
of O(n * k), where n represents the number of data
points and k is the number of clusters. Next, the algorithm
calculates distances between data points and centroids,
typically using Euclidean distances, with a complexity of
O(n * k * d), where d signifies the number of dimensions.
Subsequently, outlier trimming entails sorting distances and
removing outliers at an optimal percentage, involving sort-
ing complexities of O(n * log(n)) and additional iterations
with a complexity of O(n). Finally, cluster assignment,
akin to initialization, operates at O(n * k). This overall
complexity makes K-Means LTS suitable for datasets of
moderate size and dimensionality, as it efficiently handles
distance calculations and outlier removal, contributing to its
computational efficiency.

In general, the proposed algorithm strikes a balance
between computational efficiency and effectiveness, making
it suitable for various clustering tasks. Despite its iterative
nature, the algorithm’s computational efficiency remains
commendable, particularly when compared to alternative
methods that may require more complex calculations or
iterations. K-Means LTS algorithm presents a promising
approach for clustering tasks, offering a balance between
algorithmic complexity, ease of implementation, and com-
putational efficiency.

D. Evaluation Metrics
Evaluation metrics provide a systematic and quantitative

means to measure the quality of clustering results, guiding
researchers and practitioners in selecting the most suitable
algorithm for their specific dataset and objectives, as well as

quantifying the performance and reliability of the generated
clusters. We used several evaluation metrics available to
score our clustering result, which are:

1) Silhouette Score: The evaluation of clustering models
encompasses various methods, with one commonly
used approach being the Silhouette score. Notably, the
Silhouette score stands out due to its independence
from training set values, making it well-suited for
clustering models. This score is employed to assess
the clustering algorithm’s effectiveness, considering
both inter-cluster separation and intra-cluster cohesion.
Negative Silhouette values indicate suboptimal object
placement, while positive values signify improved
placement [20]. The Silhouette function is expressed
as:

S =
b − a

max(a, b)
(3)

Where ’a’ denotes the average distance from a data
point to all other points within the same cluster, while
’b’ represents the minimum average distance from the
data point to all other points in any alternative cluster.
By looking at these two variables, the Silhouette value
can provide a clear picture or result of the quality of
cluster formation, where positive values indicate good
placement of objects in the cluster and negative values
signify sub-optimal placement.

2) Davies-Bouldin Index: David L. Davies and Donald W.
Bouldin introduced the Davies-Bouldin Index (DBI) as
a method for assessing clusters, specifically focusing
on internal cluster evaluation. This index evaluates the
quality of cluster results based on both their quantity
and proximity in grouping methods, considering cohe-
sion (the sum of data proximity to the cluster center
point) and separation (the distance between cluster
center points).

DB(C) =
1
k

k∑
i=1

max(i, j)
∆(Ci +C j)
δ(Ci,C j)

(4)

Formula (4) ∆(Ci) represents the distance within each
cluster, while δ(Ci,C j) denotes the distance between
clusters. Specifically, in the context of the observed
Intrinsic Dimensionality Space (IDS), the centroid
diameter serves as the measure for ∆(Ci), capturing
the internal spread within clusters [21]. The primary
objective is to maximize inter-cluster distance while
minimizing intra-cluster distance, highlighting differ-
ences between clusters and indicating high character-
istic similarity within clusters. The DBI serves as a
metric for cluster validity, with a lower value indicat-
ing successful, well-separated, and compact clusters,
while higher values suggest inadequate separation and
compactness [22].
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TABLE I. K-Means Least Trimmed Squares Algorithm

Algorithm 1: K-Means LTS

1 function K Means LTS(data, n cluster, n percent):
2 centroids, cluster id = initialize kmeans(data, n cluster)
3 distances = calculate distances(data, centroids)
4 sorted data descending = quicksort distance(distances)
5 n rows to trim = int(n percent / 100 * len(sorted data descending))
6 inliers data = sorted data descending.iloc[n rows to trim:]
7 return inliers data, cluster id

8 function best K Means LTS(data, n cluster, maximum trimmed percent):
9 best K Means LTS = null
10 best silhouette score = 0
11 for n percent in range(1, maximum trimmed percent):
12 inliers data, cluster id = K Means LTS(data, n cluster, n percent)
13 silhouette score = calculate silhouette(inliers data, cluster id)
14 if silhouette score greater than best silhouette scores:
15 best K Means LTS = inliers data
16 best silhouette score = silhouette score
17 return best K Means LTS, best silhouette score

3) Elbow Method: The Elbow Method is a graphical
method for finding the optimal number of clusters (K)
in K-Means clustering. The method involves finding
the within-cluster sum of square (WCSS), which is the
sum of the square distance between points in a cluster
and the cluster centroid. WCSS (Within-Cluster Sum-
of-Squares) gauges the variance within each cluster.
Lower overall WCSS values indicate better clustering.
The WCSS values are plotted against the different
values of K, and the optimal K value is the point
at which the graph forms an elbow [23]. The point
at which this elbow occurs is considered the optimal
number of clusters, as adding more clusters beyond this
point does not significantly improve the model’s per-
formance. This method provides an intuitive and visual
way to determine a reasonable number of clusters for
a given dataset, aiding in the decision-making process
when using clustering algorithms.

E. Principal Component Analysis
Principal Component Analysis (PCA) is a dimension-

ality reduction technique commonly used in data analysis
and machine learning. Its primary goal is to transform
a dataset with potentially high-dimensional features into
a new set of orthogonal (uncorrelated) variables called
principal components. These components capture the max-
imum variance present in the original data, allowing for a
more compact representation [24]. By selecting a subset of
principal components, one can reduce the dimensionality
of the data while retaining the essential information. PCA
is widely employed for feature extraction, noise reduction,
and visualization, contributing to improved efficiency and
interpretability in various analytical tasks.

This algorithm will be used for visualization purposes,

where cluster results will be easier to interpret within 2
dimensions (features). It should be emphasized that visual-
izations might not fully capture every aspect of clustering
performance, especially in multidimensional contexts. Thus,
employing supplementary evaluation metrics and method-
ologies beyond visualization alone is advised to ensure a
thorough analysis.

4. Experiment and Analysis
The selected methodology is applied in a practical

context, presenting a thorough examination of the datasets
used in our experiments. We outline the datasets used on this
experiment, then a step-by-step process of preprocessing,
optimizations, and other crucial procedures. The structured
approach aims to provide a comprehensive view of the
experimental design, elucidating the rationale behind key
decisions made throughout the research. This experiment
was conducted using an Intel(R) Core(TM) i7-7700HQ
CPU @ 2.80GHz with 16.0 GB of memory.

A. Datasets
In this section, we introduce the datasets utilized in

our comparative experiment, aiming to evaluate the ef-
fectiveness of three distinct clustering methodologies—K-
Means, Trimmed K-Means, and K-Means Least Trimmed
Squares (LTS)—in the context of outlier detection. Our
experiment encompasses a diverse collection of 10 datasets
gathered from various sources, including Kaggle, to ensure
a comprehensive evaluation. The characteristics and origins
of each dataset are detailed in the Table II below, providing
valuable insights into the varied nature of the data and
offering a robust foundation for assessing the performance
of the clustering algorithms in the subsequent sections of
this study.
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TABLE II. DATASETS USED ON THIS EXPERIMENT

No Name Features No. Data Source

1 Air Company
Customer Info 3 62988 Kaggle [25]

2 NSE Banking
Sector 15 41231 NSE [26]

3 CC General 18 8950 Kaggle [27]

4 Sonar 61 208 UCI ML
[28]

5 Wholesale
Customers 8 440 UCI ML

[29]
6 Obesity Data 17 2111 Survey [30]
7 Diabetes 9 768 NIDDK [31]

8

Nurse Stress
Prediction
Wearable
Sensors

6 2000 Empatica E4
[32]

9 Marketing
Campaign 29 2240 iFood Brain

[33]

10 Bank Customer
Segmentation 9 5304 Kaggle [34]

B. Preprocessing
For achieving optimal cluster results across the three

algorithms employed, a preprocessing step is essential for
each dataset under consideration. The preprocessing steps
are tailored to the characteristics of the respective datasets.
A common preprocessing technique we employ involves
handling null data and transforming the data to achieve
a well-distributed format without altering the data values.
Specifically, we utilize quantile transformation, a technique
that maps the original data distribution to a predefined target
distribution, often a standard normal distribution [35]. This
process assigns each data point its corresponding quantile
in the target distribution, ensuring that the transformed data
adheres to the desired distribution. Quantile transformation
proves advantageous in preprocessing datasets for clustering
by effectively mitigating the impact of outliers and non-
gaussian distributions. This adaptation makes the data more
suitable for algorithms that assume normality or exhibit
sensitivity to outliers. The transformation to a standard
distribution enhances the robustness and performance of
clustering algorithms, enabling them to operate more ef-
fectively and consistently across diverse datasets.

C. Optimizations
To create optimal cluster results for each dataset using

the three tested algorithms, we devised optimization steps
to determine the best number of clusters and the optimal
trimmed percentage for the RTKM and K-Means LTS
algorithms.

1) Number of Clusters: To determine the best number
of clusters (K), we employ the elbow method for
each K value ranging from two to eight, used to find
the optimal Within-Cluster Sum of Squares (WCSS)

for the regular K-Means algorithm. In cases where
the elbow point is not clearly visible, we refer to
the silhouette score for the K value in K-Means for
the tested dataset. This unsupervised finding of the
best K is then utilized for all three algorithms under
investigation: K-Means, RTKM, and the proposed K-
Means LTS in this article.

2) Optimal Trimmed Percentage: After determining the
best number of clusters (K), we proceeded with cluster-
ing for the K-Means, RTKM, and K-Means LTS algo-
rithms. For the RTKM and K-Means LTS algorithms,
which require a trimming percentage, we searched for
the optimal percentage by iteratively seeking the best
silhouette score. The percentage range used starts from
5% up to 30% as the maximum trimmed percent
from Table I. with an increment value of five percent
for each iteration. Even though the optimal percentage
values were carried out unsupervised by comparing
the silhouette scores, we observed that the optimal
trimmed percentages for both RTKM and K-Means
LTS algorithms consistently yielded the highest sil-
houette scores at the maximum percentage 30%. In-
creasing the percentage of outlier data removal in the
algorithms improves the silhouette score by eliminat-
ing the influence of isolated points. This results in the
formation of more homogeneous clusters, contributing
to a higher silhouette score.

5. Result and Discussion
In this section, we delve into the outcomes of the

comparative experiments of the proposed K-Means, RTKM,
and K-Means LTS algorithms. The evaluation is based on
silhouette score, Davies-Bouldin Index, and cluster visual-
izations, providing insights into how these methods respond
to outliers in the clustering data.

The evaluation metrics for the K-Means, RTKM, and K-
Means LTS algorithms for the ten datasets used are depicted
in Tables III, IV, V, respectively. These tables present the
overall results of the experiments, including the outcomes
of the best number of clusters (K) and the optimal trimmed
percentage (%), as well as the silhouette score and Davies-
Bouldin Indices (listed under the column DBI) obtained in
the experiment. The running time of finding the optimal
trimmed percentage on two novel algorithms, RTKM and
K-Means LTS, is also measured to examine the efficiency
of the model on Table IV and V.

A. Silhouette Score
The obtained silhouette values across each dataset for

the three models reveal notable distinctions. Specifically,
the silhouette values derived from the K-Means model are
markedly smaller in comparison to the other two models,
namely K-Means LTS and RTKM. A detailed examination
of Tables III, IV, and V underscores that the silhouette
values attained from the K-Means LTS model outperform
those of K-Means and RTKM across all datasets. The
highest silhouette value obtained by K-Means is 0.69 on the
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first dataset. Meanwhile, RTKM gets 0.75 for the highest
Silhouette value. And K-Means LTS 0.78 on the same
dataset. This observation suggests that the K-Means LTS
algorithm operates optimally, leading to the formation of
well-defined and distinct clusters. The value generated by
k-Means LTS is close to 1.0 and is positive. Thus, the results
obtained can be called optimal. The superior silhouette
values for K-Means LTS underscore its efficacy in achieving
optimal cluster separation, reflecting its robust performance
in the context of the analyzed datasets.

The interpretation of results may be influenced by the
sensitivity of the silhouette score to variations in cluster
shapes and densities, which may not consistently reflect
the underlying distribution of the data. The silhouette score
in this experiment is also used as a reference for finding
the optimal trimming percentage for the proposed K-Means
LTS algorithm. The trimming percentage value is influenced
by the amount of data trimmed as outliers; as more data is
trimmed, the resulting clusters from inliers become denser,
leading to higher silhouette scores. Hence the maximum
trimming percentage of 30% used in iterations on each
dataset consistently chosen as the optimal trimming percent-
age. This suggests that there is room for further improve-
ment in determining a more equitable trimming percentage
beyond relying solely on the silhouette score metric.

B. Davies-Bouldin Index
Similar to the obtained Silhouette values, the Davies-

Bouldin Index differs among the algorithms. A closer
examination of the evaluation matrices in Tables IV,
and V reveals that both algorithms, K-Means LTS and
RTKM, exhibit larger indices for datasets 3, 4, 6, and 9.
These particular datasets display suboptimal cluster divi-
sions, signaling the need for improved analytical techniques
and preprocessing methods. Unlike the silhouette value,
the Davies-Bouldin Index evaluates model performance by
looking at which model produces the smallest value. The
smaller the value obtained by the model, the better the
clustering quality. K-Means produces the smallest Davies-
Bouldin Index on the first dataset, which is 0.4076. RTKM
produces the smallest value on the same dataset, which is
0.3572. While K-Means LTS on the same dataset, produces
the smallest Davies-Bouldin value of other modelling which
reaches 0.2839. Nevertheless, it is noteworthy that the
index generated by K-Means LTS is consistently lower than
that of RTKM, as evident in the evaluation across all 10
datasets. This suggests that K-Means LTS excels not only
in Silhouette values but also in achieving lower Davies-
Bouldin Indices, affirming its superior performance across
the diverse dataset scenarios.

C. Visualization
We will present multiple examples of clustering results

for K-Means, RTKM, and K-Means LTS through scatter-
plots. We will use the clustering results for three datasets:
Air Company Customer Info, NSE Banking Sector, and
Bank Customer Segmentation. We reduced the features of

these three datasets to two dimensions via PCA for ease
of visualization. However, it’s important to acknowledge
the limitations of visualizations in capturing all aspects
of clustering performance, especially in multidimensional
spaces even when using PCA. While scatterplots offer
valuable insights into cluster distributions and separations,
they may not fully represent the intricacies of clustering
algorithms’ behavior, especially in high-dimensional spaces.
Therefore, a comprehensive analysis of clustering perfor-
mance should also consider other evaluation metrics and
techniques beyond visualization alone.

Figure 2. Visualization of K-Means, K-Means LTS, and RTKM
results on the first dataset.

Figure 3. Visualization of K-Means, K-Means LTS, and RTKM
results on the second dataset.

Based on these visualizations, K-Means clusters the data
still with outliers that cannot be removed. RTKM is visually
good because there are no more outliers in each group
of data formed. The K-Means LTS algorithm effectively
eliminates outliers in clustering, consistent with the optimal
values of K and trimmed percentage. Trimming in K-Means
LTS is conducted fairly for each cluster formed from the
K-Means results, unlike RTKM, which iteratively trims
by minimizing its objective function during the clustering
process until convergence. Therefore, points identified as
outliers by these two algorithms differ significantly.

However, in this experiment, we observed that the
RTKM algorithm does not return the correct number of
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TABLE III. EVALUATION METRICS FOR K-Means

No Dataset Name Best K Silhouette DBI
1 Air Company Customer Info 2 0.6908 0.4076
2 NSE Banking Sector 2 0.3644 1.0033
3 CC General 7 0.3724 1.2426
4 Sonar 3 0.1165 2.2625
5 Wholesale Customers 4 0.6377 0.5807
6 Obesity Data 4 0.2876 1.6111
7 Diabetes 3 0.4020 1.1342
8 Nurse Stress Prediction Wearable Sensors 7 0.4311 0.8877
9 Marketing Campaign 2 0.4830 1.4402

10 Bank Customer Segmentation 2 0.5841 0.6127

TABLE IV. EVALUATION METRICS FOR RTKM

No Dataset Name Optimal % Silhouette DBI Runtime
1 Air Company Customer Info 30 0.7516 0.3572 617.5s
2 NSE Banking Sector 20 0.3965 0.9639 257s
3 CC General 30 0.3866 1.0826 26.9s
4 Sonar 15 0.1223 2.4719 0.3s
5 Wholesale Customers 25 0.7108 0.4354 0.3s
6 Obesity Data 25 0.3923 1.1222 2.0s
7 Diabetes 25 0.5664 0.6857 1s
8 Nurse Stress Prediction Wearable Sensors 25 0.4458 0.7168 7.7s
9 Marketing Campaign 15 0.5962 1.002 2.3s

10 Bank Customer Segmentation 30 0.6416 0.5074 27.4s

TABLE V. EVALUATION METRICS FOR K-Means LTS

No Name Optimal % Silhouette DBI Runtime
1 Air Company Customer Info 30 0.7844 0.2839 188.8s
2 NSE Banking Sector 30 0.4253 0.8902 98s
3 CC General 25 0.4121 1.0762 6.4s
4 Sonar 30 0.1275 2.1569 0.4s
5 Wholesale Customers 30 0.7250 0.4735 0.3s
6 Obesity Data 30 0.3811 1.3621 0.7s
7 Diabetes 30 0.5474 0.7305 0.3s
8 Nurse Stress Prediction Wearable Sensors 30 0.5634 0.5730 0.6s
9 Marketing Campaign 5 0.5096 1.3622 0.6s

10 Bank Customer Segmentation 30 0.6672 0.4538 2.6s

clusters according to the specified parameters. For example,
using K = 3 for the first dataset ”Air Company Customer
Info” with the same parameters tested multiple times, the
algorithm displays combinations of cluster numbers from
0 to 3 with outliers visible in the following visualization
comparisons. Hence, it requires several attempts for the
same K value until obtaining accurate results, thereby
affecting processing time.

In contrast, with the K-Means LTS algorithm, we can
consistently return the correct number of clusters deter-
mined in the optimization phase. Additionally, in the vi-
sualization of K-Means LTS, we have the capability to
identify the outliers that are in close proximity to specific
clusters. This enables a reconsideration of these data points
as outliers, unlike the RTKM algorithm, which groups all
outliers into a single cluster. Therefore, the interpretability
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Figure 4. Visualization of K-Means, K-Means LTS, and RTKM
results on the tenth dataset.

Figure 5. RTKM generated with K = 3 on the first dataset shows 1,
2, and 3 centroids with inconsistent cluster result.

of the K-Means LTS algorithm is superior to the RTKM
algorithm, as we consistently provide clustering results
with the specified number of clusters with their outliers.
Clearer visualization results through pairplots for all three
algorithms for each dataset, including post-trimming and
pre-trimming cluster results, can be accessed via the GitHub
link provided at the end of the article.

6. CONCLUSION AND FUTURE WORKS
This study introduces an innovative clustering modeling

algorithm that leverages Least Trimmed Square as a post-
processing technique to effectively address outlier data
within each cluster. K-Means gives unsatisfactory results
and there are still many outliers that cannot be resolved
despite using quantile transformers to change the data
distribution to normal. It is evident that regular K-Means
is not enough to resolve the outliers. RTKM works quite
well although the cluster division results are not clear for
some truncation percentage trials. It also cannot automat-
ically determine the K value and truncation percentage.

This K-Means LTS algorithm proposed can work better
in this research through proving Silhouette Score, DBI,
runtime (compared to RTKM) and also consistent visualiza-
tion/cluster creation. Diverging from the methodology em-
ployed by RTKM, K-Means LTS operates by systematically
removing outliers subsequent to the initial partitioning of
data into distinct clusters. This distinctive approach enables
the algorithm to elucidate the percentage of outliers trimmed
within each cluster with greater granularity, offering a
more specific and detailed insight into the outlier-handling
process. The utilization of K-Means LTS thus contributes
to an enhanced understanding of the algorithm’s capability
to manage and refine clusters by mitigating the impact of
outliers in a targeted and specific manner.

Based on the conducted experiments, the K-Means LTS
algorithm successfully eliminates outliers in the clustering
results, with similar or better silhouette scores and Davies-
Bouldin Index with the RTKM algorithm. Furthermore, in
terms of runtime, our algorithm competes effectively with
the trimmed K-Means algorithm. The proposed algorithm
also consistently produces good clusters according to the
best number of clusters and optimal percentage parameters
determined during the optimization phase. Furthermore,
the future work directions outlined from Olga Dorabiala
in [19] for determining two parameters (n cluster, per-
cent outliers) have been identified through unsupervised
application of the elbow method and silhouette score. How-
ever, further research is needed to determine the optimal
value for num members in the RTKM algorithm in an
unsupervised manner, as this study primarily focuses on
identifying outliers in hard-clustering K-Means for single-
membership data.

While we successfully determined the trimmed percent-
age by examining the best silhouette scores, there is room
for future exploration where researchers can discover alter-
native metrics for determining optimal trimming, apart from
relying solely on silhouette scores. Furthermore, a deeper
examination of the outcomes generated by the proposed K-
Means LTS algorithm in this study could involve exploring
additional datasets with diverse sizes and characteristics.
This exploration would provide insights into the algorithm’s
suitability for real-world applications. Moreover, it would
facilitate an assessment of how the algorithm’s architecture
could be modified to support different types of health data
and exchange patterns.

Code Availability
https://github.com/jptriciaestella/Skripsi-Kmeans-LTS
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