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Abstract: Breast cancer stands as a prevalent concern for women worldwide. Mammography serves as the frontline defense for
early detection, yet its low X-ray dosage often leads to suboptimal image quality. This study proposes a multi-step solution:
(i) Image enhancement employs a two-step approach: denoising using bivariate shrinkage and a hybrid median filter based on
stationary wavelet transform (SWT) to avoid shift variants, and it is combined with modified morphology operations including
the background, a vignette image with the weighting function 1/R2. (ii) Segmentation utilizes the fast K-means algorithm with
a straightforward technique to select the number of clusters and tumors automatically, within the segment containing the largest
centroid. (iii) Classification employs a boosting ensemble model, based on statistical features extracted from SWT coefficients at
different levels, for tumor classification to achieve reliable results. Utilizing mammograms from the MIAS (Mammographic Image
Analysis Society) public dataset, the proposed method was tested on Gaussian noisy images, demonstrating superior performance
compared to existing algorithms in detecting lesions. The segmentation achieves a high accuracy, 98.15% on average and a
specificity of 99.56%. However, the ground truth occasionally extends beyond the tumor mass, resulting in a low sensitivity of
62.81%. Finally, classification is also performed using boosting ensemble learning with accuracy of 100% for training, testing and
real data.

Keywords: Breast Cancer, Mammogram, Stationary Wavelet Transform, Bivariate Shrinkage, Morphological Transform,
Segmentation

1. Introduction
WHO (World Health Organization) data reveals 2.3

million breast cancer diagnoses and 685,000 deaths in
2020 [1]. Breast cancer casts a long shadow on global
public health, impacting on numerous women and their
families each year. The importance of early detection
is widely recognized as a crucial element in improving
patient outcomes and reducing mortality rates associated
with breast, fibrous and glandular cancers.
An approach for early breast cancer detection is mam-
mography, where specialized X-rays are used to scrutinize
breast tissue. Yet, certain mammograms might be unclear
and lack contrast, posing challenges in distinguishing
tumors from dense breast tissue (comprising fibrous and
glandular elements) due to their similar brightness lev-
els. Therefore, noise reduction and contrast enhancement
are essential preliminary measures before image anal-
ysis. Various denoising methods have been proposed,
with wavelet denoising being widely used. Recent ad-
vancements in medical image processing, particularly de-

noising, enhancement, and detection techniques, are ex-
plored in this review.
Sendur et al. (2002) [2] presented an image denois-
ing method based on discrete wavelets called bivariate
shrinkage. When denoising with the nonlinear threshold,
the new shrinkage functions determine the threshold for
each coefficient based on the values of its parent and
child within the wavelet decomposition, breaking away
from the assumption of independence between wavelet
coefficients. Therefore, the image denoising is better than
the result achieved by the traditional method. Yin et al.
(2011) [3] introduced a new image denoising method that
models wavelet coefficients with a special distribution
called the anisotropic bivariate Laplacian. This approach
utilizes a corresponding shrinkage technique to remove
noise, and for even better results, it was adapted to
work within the DT-CWT domain. Fan et al. (2019) [4]
presented a noise removal technique for images in the
wavelet domain that utilizes wavelet thresholding and
Wiener filtering. Benhassine et al. (2021) [5] proposed an
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optimal image denoising method used for medical images
using discrete wavelet transform (DWT). The obtained co-
efficients are thresholded using optimization algorithms.
The performance of the method under different types of
noise is determined by the criteria MSE (Mean Squared
Error), PSNR (Peak Signal-to-Noise Ratio), and SSIM
(Structural Similarity Index Measure).
Coffey et al. (2022) [6] explored the potential of Contrast-
enhanced mammography (CEM) for breast cancer screen-
ing. CEM is a new imaging technique that combines
traditional mammograms with contrast dye to show both
structure and blood flow in the breast. It offers high accu-
racy in detecting breast cancer, especially in women with
dense breasts, and is less expensive and more accessible
than MRI scans. Tian et al. (2023) [7] proposed a method
for denoising images using a multi-stage convolutional
neural network that combines wavelet transformation and
discriminative learning. Their method outperformed exist-
ing denoising methods in both quantitative and qualitative
analysis.Liu et al. (2023) [8] addressed image denoising,
a crucial step in image processing. They proposed a
novel method based on wavelet transform and non-local
moment mean filtering, achieving better denoising effects
compared to other approaches.
J. Wu and C. Hicks (2021) [9] compared four ma-
chine learning methods, called Support Vector Machines
(SVM), K-nearest neighbors (KNN), Naive Bayes, and
Decision Trees, for mammogram classification. Their
results demonstrated that SVM outperformed the other
methods in terms of classification accuracy. Kittipol
Wisaeng (2022) [10] employed a median filter to denoise
mammograms and used the denoised images for tumor
extraction applying Cuckoo Search to K-means clustering
for the optimal cluster number selection. Razali et al.
(2023) [11] address the challenge of dense breast tissue
obscuring abnormalities in mammograms. They propose
a textural-based enhancement technique. By analyzing
breast density in each image, the technique tailors image
processing to improve visibility of potential abnormali-
ties. This targeted enhancement aims to benefit computer-
aided diagnosis systems and potentially improve early
cancer detection. Mourad Talbi and Riadh Baazaoui
(2023) [12] employed soft thresholding on the detail
components of the Stationary Wavelet Transform (SWT)
for noise reduction. In addition to the noise reduction
papers mentioned above, this section also reviews two
recent studies on tumor detection and classification in
mammograms, as they are relevant to the issues addressed
by our proposed method.
The aforementioned studies demonstrated that noise re-
duction and contrast enhancement are performed sep-
arately. Noise reduction within the wavelet domain
has traditionally treated components at different detail-
component as independent, with the exception of the
bivariate shrinkage method. In [2] and [3], the authors
consider the correlation between parent and child wavelet
coefficients of the Discrete Wavelet Transform (DWT).
However, this approach has not been applied to the Sta-
tionary Wavelet Transform (SWT) and does not address
contrast issues. In [9], machine classifiers are used indi-
vidually, which necessitates a large number of instances
to achieve satisfactory results. In [10], K-means is used
for cluster selection, but the cluster containing the tumor

requires a complex optimization search.
The contributions of the proposed approach aim to fill the
gaps in the literature review:
(i) Utilizes wavelet-based image fusion for mammo-
graphic image enhancement. This enhancement method
combines two techniques: denoising using stationary
wavelet transform (SWT) with bivariate shrinkage, which
considers the relationship between wavelet coefficients,
and contrast enhancement using modified morphological
operations.
(ii) Automatically selects clusters and identifies tumor-
containing cluster for tumor detection using the fast K-
means algorithm.
(iii) Extracts features from the enhanced image – instead
of the segmented image – for ensemble learning-based
tumor classification.
The rest of this paper is organized as follows. Section
2 reviews relevant theory, Section 3 details the proposed
methodology, Section 4 presents the experimental results
obtained, and Section 5 concludes the paper with future
research directions.

2. Theoretical Background
A. Stationary Wavelet Transform

Wavelet analysis, valued for its time-frequency char-
acteristics, finds significant use in image processing [13],
particularly in denoising medical images like mammo-
grams. Numerous research papers present this application
[2-8]. The cornerstone of our denoising method is the
use of the Stationary Wavelet Transform (SWT). The
core functionality of SWT, similar to DWT, is image
decomposition. It separates an image into four key com-
ponents: approximation (A) capturing the overall struc-
ture, and detail components representing vertical (V),
horizontal (H), and diagonal (D) features (Fig. 1) [14].
However, SWT performs upsampling of the coefficients
of two low/high pass filters (Fig. 1a), so it maintains
spatial localization and does not suffer from shift-variant
problems. SWT handles edges and boundary effects more
effectively than DWT, making it suitable for tasks such
as image denoising and compression. As shown in Figure
1b, a single-level SWT decomposition of an MxN image
produces four subbands: approximation(LL), horizontal
detail (LH), vertical detail (HL), an diagonal detail (HH).
These subbands have the same size MxN with the original
image.

“À trous” is a common algorithm to calculate the
Stationary Wavelet Transform (SWT) using a filter bank
(h, g). The filters h are low-pass filters extracted from
the scaling function, and the filters g are high-pass filters
extracted from the wavelet function. For a 1-D signal,
the algorithm produces a set of coefficients: w j (high-pass
filter) and c j (low-pass filter) at scale j, given by:

c j(k) = (h̄ j−1 ∗ c j−1)[k] =
∑

l

h[l]c j−1[k + 2 j−1l] (1)

w j(k) = (ḡ j−1 ∗ c j−1)[k] =
∑

l

g[l]c j−1[k + 2 j−1l] (2)

where, ∗ denotes convolution and h j(k) = h(k) if k/2 j is an
interger and 0 for otherwise (Fig. 1a). So at each level,
SWT coefficients have the same length as the original
signal.
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Figure 1. a) Padding 0 in the “À trous” filter, b) The flow-chart
for single-scale SWT decomposition

As a result, c0 (reconstruction) can be expanded as
the sum of the wavelet coefficients w j(k) and the final
smoothing data cN :

c0(k) = cN +

N∑
j=1

w j(k). (3)

This algorithm can be extended to images (2-d signals):
approximation coefficient:

c j[k, l] = (h̄ j−1h̄ j−1 ∗ c j−1)[k, l], (4)

detail coefficient in horizontal direction:

w1
j [k, l] = (ḡ j−1h̄ j−1 ∗ c j−1)[k, l], (5)

detail coefficient in vertical direction:

w2
j [k, l] = (h̄ j−1ḡ j−1 ∗ c j−1)[k, l], (6)

detail coefficient in diagonal direction:

w3
j [k, l] = (ḡ j−1ḡ j−1 ∗ c j−1)[k, l] (7)

where, hg∗c denotes convolution first along the rows and
the convolution along the columns [15] (Fig. 1b).

B. Bivariate Shrinkage
Bivariate shrinkage for wavelet is an approach em-

ployed to diminish the presence of noise in images by
utilizing the correlation between wavelet coefficients at
different scales [16].
Consider an image degraded by Gaussian noise,

g = x + ε (8)

where ε is Gaussian noise, g is observation image and x
is an noise-free image. The problem for denoising is to
find x from g by some criteria such that x is as close to
the original image as possible.
Levent Sendur and Ivan W. Selesnick [2], modified

Figure 2. The analysis stage of bivariate shrinkage for wavelet
decomposition

Bayesian estimation problem in the wavelet domain, has
statistical dependence of the adjacent wavelet coefficients:

y = f + n (9)

where, y(y1, y2), f( f1, f2), n(n1, n2) are respectively the
wavelet coefficients of noisy image, free-noise image and
noise; y1 is the detail component of level k (child) and y2
is the detail component of level k + 1 (parent); these are
two adjacent wavelet coefficients (Fig. 2).
According to Levent Sendur and Ivan W. Selesnick [2],

the non-Gaussian bivariate probability density function
given by:

Pf(f) =
3

2πσ2 exp(−

√
3
σ

√
f 2
1 + f 2

2 ). (10)

In this function, f1 and f2 are uncorrelated but not
independent, with σ is marginal variance.
The MAP estimator of f̂1 produces the bivariate shrinkage
function:

f̂1 =

√
y2

1 + y2
2 −

√
3σ2

n
σ√

y2
1 + y2

2

.y1. (11)

The result shows that the estimated value of f1, depends
not only on y1 (child wavelet coefficient) but also on y2
(parent wavelet coefficient), showing that the formula has
a parent-child dependency; so, the accuracy will be better
than soft thresholding.

C. Dual Morphological enhancement
Image enhancement involves improving the contrast

of an image, often through denoising techniques like
histogram stretching or equalization. The most common
method is histogram equalization, which rearranges
the histogram to increase contrast. However, when the
resulting image is used to detect tumors, the tumor
locations are different from the ground truth tumor
locations. Therefore, in order to avoid the above
disadvantages, this article uses morphological operations
with top-hat and bottom-hat transforms. The top-hat
transform is obtained by subtracting the opened image
from the original using a specific structural element,
yielding an image that encompasses objects that are
smaller than the structural elements and brighter for
their surroundings. Conversely, the bottom-hat transform
is derived from the disparity between the input image
and its closing, generating an image highlighting objects
that are smaller than the structuring elements and darker
for their surroundings. Consequently, combining the
denoised image with the top-hat filtered image and
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then the bottom-hat filtered image is subtracted to
obtain the contrast-enhanced image, which is called dual
morphological enhancement [17].
- Top-hat transform:

Ttop−hat(I) = I − (I ◦ S E) (12)

- Bottom-hat transform:

Bbottom−hat(I) = (I • S E) − I (13)

- Dual morphological enhancement:

Ioutput = I + Ttop−hat(I) − Bbottom−hat(I) (14)

where, I represents the original image, S E denotes the
structuring element, ◦ the morphological opening opera-
tion and • the morphological closing operation.

D. K-means and Fast k-means
K-means is an unsupervised clustering algorithm that

divides data into K different groups. In mathematical
terms, the K-means algorithm aims to minimize the
objective function:

J =
m∑

i=1

K∑
k=1

wik∥xi − µk∥
2 (15)

where, wik = 1 for the data point xi if it belongs to cluster
k, otherwise, wik = 0; µk represents the centroid of cluster
k [18], [19].
The well-known K-means clustering algorithm suffers
from a slow convergence rate. This limitation has moti-
vated the development of faster variants, such as the fast
K-means algorithm [20], [21]. According to Raied Salman
et al. [21], the convergence rate is improved by dividing
the distance calculation phase into two steps. Step 1,
involves a fast distance calculation on a small subset data
to determine the initial centroids. Step 2, calculates the
exact distance over the entire data set using the initial
centroids obtained in Step 1 to refine the centroids. The
running time of this step is also minimized due to the
lower number of iterations. Consequently, fast K-means
converge quickly.

3. ProposedMethodology
The subsequent sections elaborate on these details.

A. Image Enhancement
One of the goals of this article is image enhancement,

which involves removing noise and improving contrast.
Therefore, only markers, artifacts and pectoral muscle are
eliminated in the preprocessing stage. To avoid perform-
ing numerous operations that later lead to positioning er-
rors of the detected tumor, these components are removed
manually using Matlab software.

1) Denoising technique
Noise is a major factor affecting mammography.

Therefore, denoising is required before segmenting the
tumor. Fig. 3 shows the block diagram of the proposed
denoising step for mammography images. In this pro-
posed method, noise reduction in the wavelet domain
is performed using a stationary wavelet transform. Af-
ter decomposition, the detailed coefficients are denoised

Figure 3. The block diagram for the proposed denoising method-
ology

using the bivariate shrinkage method, which removes
noise but preserves features, as described in Section 2-B,
and the approximate components are smoothed using
hybrid median filtering. Denoised images in the spatial
domain are obtained using the inverse stationary wavelet
transform. This article uses the four wavelet functions
bior2.2, db4, sym2 and coeif2 to find the optimal wavelet
function for noise reduction.

2) Contrast enhancement
Mammograms have low tumor-to-background con-

trast. Therefore, contrast enhancement using dual mor-
phological enhancement (Section 2-C) is required. In this
article, formula (14) is modified by applying a high-pass
filter, which sharpens the edges more effectively than
using the original image. The high-pass filtered image
is created by removing the background from the origi-
nal image. The background image is typically obtained
using average or low-pass Gaussian filtering. Here the
background is a vignette image with a 1/R2 function,
creating a bright center that fades toward the edges
(vignette effect). This weighting function is multiplied by
the original image to create the final background [22].

3) Fusion to image enhancement
Wavelet fusion combines two denoising and contrast

enhancing images to create a fused image that retains the
most relevant features and information from the original
data.

B. Tumor Detection
In our proposed method, fast K-means is used for

tumor detection. The number of clusters corresponding
to the number of main peaks of the image histogram was
automatically selected by a program that detects these
peaks. In cluster analysis, the cluster containing the tumor
corresponds to the cluster with the maximum centroid
value. In this cluster, extract 3 to 5 images, each image
contains a tumor (counted from the largest tumor), and
select the image as the segment containing the tumor. The
source code for fast K-means is given by Ankit Dixit [23].

C. Tumor Classification
Breast tumor classification aims to determine whether

an image containing a mass is benign or malignant. In this
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article, the classification typically involves a three-step
process: pre-processing, feature extraction, and classifica-
tion. The pre-processing stage focuses on enhancing im-
age quality through techniques like denoising and contrast
enhancement, as examined in Sections 3-A1 and 3-A2.
This section introduces the steps of feature extraction and
tumor classification.

1) Feature extraction
Feature extraction is a transformative process that

aimes to condense the input data to reduce complexity and
highlight salient features and attributes facilitating effec-
tive classification. This is a crucial step in classification
and is performed directly on the input image to extract
low-level features or on transformed images to capture
high-level features. There are various methods for feature
extraction; this article uses some statistical features to
measure central tendency and data dispersion, which are
listed in Section 4-D [24].
The above statistical features are extracted from the ap-
proximation and detail coefficients of SWT with different
levels to obtain high-level features. The frequency bands
of the approximation and detail coefficients in SWT vary
from wide to narrow, corresponding to the levels from
low to high. Therefore, the statistical features applied to
the approximation and detail coefficients of SWT with
different levels result in features at narrow and broad
scales that captures sufficient properties of input classes
for high classification accuracy. Statistical SWT features
are contained in a feature matrix where the number of
rows represents the instances and the number of columns
represents the features.

2) Classifier design
This article employs ensemble learning, a diversifica-

tion approach in machine learning that combines multi-
ple classifiers – referred to as base classifiers or weak
classifiers – such as decision trees and Naive Bayes, to
construct a robust classifier. When the base classifiers are
identical and trained in parallel, it’s called a ”bagging
ensemble.” In contrast, when the base classifiers are
trained sequentially, it’s called a ”boosting ensemble”
(which aims) to minimize errors in the training data.
Boosting ensemble models are trained iteratively, where
each subsequent model is trained on the misclassified pre-
dictions of the previous model. This results in a lower bias
compared to individual base models. The final prediction
is obtained by combining the weighted predictions of each
base classifier. This approach not only achieves high accu-
racy but also exhibits faster computation time compared to
bagging ensembles. Consequently, a boosting ensemble is
employed in this article. The model is depicted in Figure
4.
The boosting ensemble model can be written as:

sN(.) =
N∑

j=1

c jw j(.) (16)

where, N is the number of weak models, c j are the
coefficients, and w j are the weak models. To find the best
model, Equation 16 is solved using an iterative approach:

s j(.) = s j−1(.) + c jw j(.) (17)

Figure 4. Boosting Ensemble Learning (Source: shiksha.com [25])

In the boosting ensemble method, the subsequent model
(s j) improves upon the previous model by selecting the
class label (cI) and weak learner (wI) that are most
consistent with the training data. The best model is then
obtained as:

(c j,w j(.)) =
argmin
c,w(.)

Er(s j−1(.) + c jw j(.)) (18)

where, Er(.) represents the fitting error of the given model
[26], [27].
Boosting ensemble encompasses two primary methods:
Adaptive Boosting (AdaBoost) and Gradient Boosting
[27]. Furthermore, Equation 16 has also been extended
to develop Linear Programming Boosting (LPBoost) and
Totally Corrective Boost (TotalBoost) [28].

4. Experimental Results and Discussion
A. Data and Equipment

The mammography images used in this study were
provided by the well-known MIAS database [29]. This
database contains 322 digitized mammograms at 50 mi-
cron resolution in ”Portable Gray Map” (PGM) format
of three types: normal (207), benign (63), and malig-
nant (52). Each mammogram includes information about
ground truth, its size and breast tissue structure. A
mammography image (mdb001) was selected from the
database for this study to investigate the optimization of
noise reduction parameters. Ten images listed in Section
4-C were used for tumor detection, and one hundred
images were used for classification.
The calculations for the proposed approach in Section
3 were implemented in the Matlab environment. All
experiments were conducted on a laptop equipped with
an AMD Ryzen 5 5600H processor, clocked at 3.30 GHz,
and 8.00 GB of RAM.

B. Determine parameters for image enhancement
1) Determine the optimal parameters for noise reduction

In this article, we will only investigate Gaussian noise
reduction because this type of noise is consistenly present
in images. The examined image is mdb001 (Fig. 5a),
which has been corrupted by Gaussian noise and has
a mean of 0 and σ = 25 (Fig. 5b). After pectoral
muscle removal, the image undergoes bivariate shrinkage
noise reduction through the use of a stationary wavelet
transform, selecting wavelet functions from three different
wavelet families, namely biorthogonal wavelet functions
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Figure 5. a) Original mammogram mdb001, b) Noisy mammo-
gram with Gaussian noise (σ = 25), c) Preprocessed mammo-
gram, d) Denoised and contrast enhancement mammogram using
the proposed method.

TABLE I. PSNR values of the proposed denoising method with
Gaussian noise σ = 25

Wavelet bior2.2 db4 sym2 coif2

SWT level 1 26.38 27.29 27.36 27.28
SWT level 2 25.40 27.15 27.05 27.08
SWT level 3 25.30 27.34 27.22 27.27
SWT level 4 25.29 27.36 27.19 27.31

(bior2.2), orthogonal wavelet functions with asymmetric
(db4), orthogonal wavelet functions with asymmetry with
different length (sym2 (length 2N) and coif2 (length 6N)).
Noise reduction results are evaluated using the PSNR
metric:

PS NR = 10log10(
MAX2

MS E
) (19)

where, MAX is the maximum possible pixel value (255
for an 8-bit image) and MS E is the Mean Squared
Error, which is calculated as the average of the squared
differences between the processed image and the original.
Table I shows the experimental results of image denoising
for the Gaussian noisy image mdb001 (µ = 0, σ = 25) by
PSNR of four wavelet functions (bior2.2, db4, sym2 and
coif2) at the first to fourth levels of SWT.
According to the results presented in Table I, the pro-

posed denoising method using bivariate shrinkage with
SWT produces the best results when the sym2 wavelet
function at level 1 or db4 at level 4 is used for comparison
to other wavelet functions and the remaining levels. The
Symlet family, a modification of the Daubechies family,
exhibits near-symmetry in the complex linear phase and
demonstrates remarkable effectiveness in noise reduction
[30]. Additionally, Sym2 features a short-length filter,
enabling rapid computation. Therefore, Sym2 at level
1 was chosen for noise reduction; along with level 1

TABLE II. PSNR value of the proposed contrast enhancement
method for mammogram contaminated with Gaussian noise σ =
25

Shape/Size 5 10 15 20

Disk 29.99 30.04 29.99 29.98
Square 29.99 30.02 29.97 29.99

Diamond 29.97 30.02 29.99 30.00

TABLE III. PSNR value of the proposed denoising method with
different σ Gaussian noise.

σ Mean-Mean Max-Min Max-Max

5 42.49 41.46 39.28
10 37.06 36.02 33.63
15 33.62 32.60 30.10
20 31.16 30.13 27.62
25 29.65 28.25 25.75
30 27.75 26.68 24.19

decomposition, reveals that Gaussian noise with σ = 25
occupies approximately half of the high-frequency band
of the image.

2) Determine the optimal structuring element for contrast
enhancement
After wavelet-based bivariate shrinkage for noise re-

duction, the study of contrast enhancement is carried out
by using modified top-hat and bottom-hat transforms with
multiple sets of structuring element shapes such as disk,
square, diamond with radii in the range of 5, 10, 15, 20
are utilized [31].
Table II presents the experimental results of contrast
enhancement for the mammogram mdb001 contaminated
with Gaussian noisy (µ = 0, σ = 25) by PSNR for three
shapes of structuring elements: disk, square, diamond
with different size: 5, 10, 15, 20.
According to the results of Table II, structural elements

with size 10 exhibit the highest PSNR values, which are
relatively consistent across different shapes.
However, the symmetrical flat structural element is the
most commonly used because it can be adapted to any
object shape in the image. Therefore, a disk-shaped
structuring element with a size of 10 is chosen for contrast
enhancement.

3) Image for noise reduction and contrast enhancement
As described above, denoising using stationary

wavelet-based bivariate shrinkage with sym2 wavelet
function at the first level and the contrast enhancement
using modified morphological operations with the disk
shape in size 10 of structural elements achieves the
best outcome. Therefore, to achieve both denoising and
improved contrast, these two results are fused together
using wavelet based image fusion techniques, for three
cases mean-mean, max-min and max-max are performed.
The results are presented in the Table III.
With varying standard deviation of Gaussian noise, the

Mean-Mean method yields the optimal results as chosen
in this article (Fig. 5d).
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4) Compare the denoising results with other outcomes
In order to validate the above comment, the results

are benchmarked against other thresholding algorithms
in the article of [5] such as VisuShrink, Feed-forward
denoising convolutional neural networks (DnCNN) and
Benhassine et al. method [5] on the mdb001 mammogram
with Gaussian noise using different standard deviations of
5, 10, 20 and 30, respectively. The results are shown in
Table IV.
The value of PSNR for our proposed method is higher

than all other enhancement techniques indicating better
quality.

C. Tumor detection
The mammography enhancement (denoising and con-

trast enhancement) is then subjected to breast tumor
detection using the fast K-means method. In this method,
the breast tumor located in the segment with the max-
imum centroid value is extracted and smoothed using
morphological operations.
In these experimental results, ten mammograms from the
mini-MIAS database, representing five types of abnor-
mality, are selected with two images for each category,
because each type of abnormalities may have different
characteristics. In the mini-MIAS database, each image
provides ground truth for tumors. It is not represented in
the actual shape but as a circle (with center and radius).
Therefore, we ovelay the extracted breast tumor with a
black circle representing the ground truth (provided by
MIAS) on the original image to visualize the accuracy. To
calculate the accuracy of the extracted tumor in compari-
son to the ground truth, the proposed method’s extracted
tumor is analyzed using the ’regionprops’ function in
Matlab to obtain its center coordinates, perimeter, area,
and major and minor axes. The radius is calculated as the
average of the major and minor axes of the tumor and the
extracted circle which is represented by the white shaded
area in the mammogram.
Circular (CIRC) mdb001 and mdb028, often appear as a
well-circumscribed mass with uniform density throughout
the lesion. The segmentation results, shown in Figures
6 and 7, indicate that the segmentation achieves good
sensitivity. Miscellaneous (MISC) mdb063 and mdb058,
exhibit significant variations in shape, edges, and inter-
nal density, which complicates diagnosis. Figures 8 and
9 illustrate the segmentation results. While the results
for image mdb063 achieve good performance, the seg-
mentation for image mdb058 deviates from the ground
truth. Figures 10 and 11 are the segmentation results
of Asymmetrical (ASYM) mdb104 and mdb111. Despite
the non-convex boundaries and the lack of significant
difference between the central region and the outer region
in ASYM, the segmentation results are good. Architec-
tural Distortion (ARCH) mdb165 and mdb117, the edges
of architecturally distorted lesions are typically irregular
and blend into the surrounding tissue, which can be
challenging to discern. Although Figures 12 and 13 show
the segmentation results, these outcomes seem limited in
scope and likely generate false positives. Figures 14 and
15 show well-segmented results for Spiculated (SPIC)
masses, mdb198 and mdb184, which are characterized
by spiculated shapes resembling spikes emanating from a
central point.

Figure 6. Result of CIRC lesion: a) Original mammogram mdb001
with ground truth (the lesion in the circle), b) Processed mam-
mogram by the proposed method, c) Final segmented tumor mass
by fast K-means method, d) Output image (black circle: ground
truth, whiteshaded area: proposed method).

Figure 7. Result of CIRC lesion: a) Original mammogram
mdb028, b) Processed mammogram, c) Final segmented tumor,
d) Output image.

Despite the variations in tumor shapes, the fast k-means
method effectively segments most tumors. The aforemen-
tioned results may be attributed to the selection of an
suitable initial number of clusters and the enhancement
of image efficiency.

Through the tumor extraction results of ten mammo-
grams and the corresponding ground truth; the true posi-
tive (TP), true negative (TN), false positive (FP) and false
negative (FN) are evaluated to determine performance
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TABLE IV. The PSNR of four methods with different standard deviations Gaussian noise

Gaussian noise σ VisuShrink DnCNN Benhassine [5] Proposed Method

5 38.48 39.05 40.76 42.49
10 33.78 31.71 35.53 37.06
20 29.57 25.53 30.25 31.16
30 26.83 22.15 27.15 27.75

Figure 8. Result of MISC lesion: a) Original mammogram
mdb063, b) Processed mammogram, c) Final segmented tumor,
d) Output image.

Figure 9. Result of MISC lesion: a) Original mammogram
mdb058, b) Processed mammogram, c) Final segmented tumor,
d) Output image.

Figure 10. Result of ASYM lesion: a) Original mammogram
mdb104, b) Processed mammogram, c) Final segmented tumor,
d) Output image.

Figure 11. Result of ASYM lesion: a) Original mammogram
mdb111, b) Processed mammogram, c) Final segmented tumor,
d) Output image.
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Figure 12. Result of ARCH lesion: a) Original mammogram
mdb165, b) Processed mammogram, c) Final segmented tumor,
d) Output image.

Figure 13. Result of ARCH lesion: a) Original mammogram
mdb117, b) Processed mammogram, c) Final segmented tumor,
d) Output image.

metrics such as:

Accuracy (Acc) =
T P + T N

T P + T N + FP + FN
(20)

S ensitivity (S en) =
T P

T P + FN
(21)

S peci f icity (S pec) =
T P

T P + FP
(22)

Table V shows the segmentation results, which demon-
strate that the proposed approach attains an average
accuracy of 98.15% and specificity of 99.56%. Because
the ground truth is represented by a circle that can
extend beyond the tumor mass, the FN is relatively high,

Figure 14. Result of SPIC lesion: a) Original mammogram
mdb198, b) Processed mammogram, c) Final segmented tumor,
d) Output image.

Figure 15. Result of SPIC lesion: a) Original mammogram
mdb184, b) Processed mammogram, c) Final segmented tumor,
d) Output image.

resulting in a low sensitivity of only 62.81%.
Table VI presents the segmentation results of other

authors, demonstrating that the segmentation results in
this paper are comparable to those of others. However,
when a larger number of images are used, the results may
differ.

D. Classification results
Data were extracted from the mini-MIAS dataset,

from which 50 benign and 50 malignant tumor images
were selected to calculate six statistical features: the mean
absolute value, the standard deviation, the skewness, the
kurtosis, the RMS power, and the ratio the mean absolute
values of two consecutive subbands of the approximation

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


1064 Yen Thi Hoang Hua, et al.: Enhancing and Denoising Mammographic Images for Tumor Detection

TABLE V. The results of evaluation metrics in ten experimental
mammograms

Images Acc (%) Sen (%) Spec (%)

mdb001 90.79 34.61 100.00
mdb028 99.86 93.22 99.86
mdb063 99.82 76.84 99.84
mdb058 97.56 2.15 97.74
mdb104 99.77 84.85 99.87
mdb111 99.16 86.11 100.00
mdb165 98.71 42.97 98.74
mdb117 98.51 58.56 99.57
mdb198 98.83 71.93 99.94
mdb184 98.53 76.83 100.00
Average 98.15 62.81 99.56

Figure 16. Confusion matrices, a) Test Data, b) Real Data

and detail coefficients of the SWT, from level 1 to level 8
using the ‘db4’ wavelet function. Therefore, each image
is represented by 95 features recorded in a SWT feature
matrix of size 100x96. Columns 1 to 95 represent the
features, and column 96 represents the label of the image.
The matrix is split into training (80%) and testing (20%)
sets , which are used to build a classification model.
The small sample size is due to the limitations of the
MIAS dataset, which only contains 52 images of ma-
lignant breast cancer. Five of these images were already
used during tumor segmentation, leaving only 47. To
reach the desired sample size of 50, additional images
containing microcalcifications were included. While there
are more benign images available, only 50 were selected
to maintain data balance. These images were enhanced
using our proposed approach and then used for feature
extraction. These features are used to build a classification
model based on boosting ensemble learning. The boosting
ensemble method utilizes the fitcemsemble function from
Matlab. It employs the LPBoost method with a decision
tree as the base learner, a number of learning cycles set
to 500, and no requirement for specifying the number
of members. The results demonstrate the model’s strong
performance, achieving 100% accuracy on the training
data. When applied to testing data and real data (ten
mammograms listed in Table V, which are independent
of the training data), the accuracy remains 100% for both
datasets.
Figure 16 presents the confusion matrices for the test data
and real data. The results showed that the model per-
formed well and was stable. Despite the limited number
of instances in the dataset, the features range from wide
to narrow frequency bands of the frequency spectrum of

the original image, which adequately capture the charac-
teristics for classification. Additionally, the selection of a
classifier suitable for these features enhances the model’s
performance in classification tasks.
The results were compared with those of the studies other
authors [35], [36], [37] as listed in Table VII. This demon-
strates that the boosting ensemble model outperforms the
other methods.

5. Conclusion
Mammography stands at the forefront of early breast

cancer detection and the comprehensive analysis of breast
tumors. The method under consideration seeks to assist
radiologists in image interpretation, thereby enhancing the
collective effort against this pervasive ailment. Through
the amalgamation of computational methodologies, breast
cancer screening endeavors to attain heightened precision
and mitigate instances of false positives, thus advancing
the efficacy and reliability of diagnostic procedures in the
ongoing battle against this formidable disease.
The proposed method substantiates its efficacy through
three pivotal stages of medical analysis: image enhance-
ment, segmentation, and classification. This progression
notably enhances disease diagnosis accuracy, as evi-
denced by the ensuing experimental findings:
(a) Shift invariance is crucial in image denoising. The
absence of shift invariance implies that minor adjustments
in the input signal lead to significant fluctuations in the
energy distribution between the transform coefficients at
different scales and are therefore not suitable for denois-
ing. Then, SWT-based denoising method with bivariate
shrinkage and hybrid median filter provides a robust
solution for image denoising.
(b) The vignette effect, when used with modified mor-
phological operations, can increase the focus on details
in the central area, thereby significantly increasing the
contrast between objects and their surrounding area and
thus improves segmentation. Noise reduction and contrast
enhancement are computed separately and then fused
using wavelet-based image fusion to select the dominant
features for image enhancement.
(c) The choice of clustering fast K-means algorithms by
automaticcally binning the histogram distribution makes
this method more advantageous in the segmentation pro-
cess.
(d) Feature extractions from the wavelet coefficients of
SWT from level 1 to level 8 show that the features
extracted at different scales correspond to the charac-
teristics of the image in frequency ranges from wide to
narrow. This ensures that feature extractions are sufficient
for effective classification even when there are not many
instances.
This study presents an analysis of noise reduction tech-
niques for image enhancement and the extraction of sta-
tistical features for classification, utilizing the coefficients
generated by SWT. Specifically, the segmentation process
incorporates the K-means algorithm, highlighting its effi-
cacy in partitioning images. Consequently, segmentation
via SWT, coupled with the extraction of diverse features
beyond statistical metrics for classification, emerges as a
prospective avenue for future research endeavors. The in-
tegration of SWT coefficients offers a promising founda-
tion for enhancing image quality through noise reduction,
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TABLE VI. The segmentation results of other authors

No. Authors Methods Number of images Accuracy (%)

1 Shrivastava et al. (2017) [32] Dispersed region growing algorithm 322 91.3
2 Soul et al. (2020) [33] The electromagnetism-like algorithm 56 78.57
3 Wisaeng (2022) [10] K–Means++ with Cuckoo Search 123 96.92
4 Ion et al. (2023) [34] Fuzzy cellular automaton 118 98.66
5 Proposed approach Fast and adaptive K-means 10 98.15

TABLE VII. Comparison of Classification Results with Different Methods on MIAS Dataset

No. Authors Classifier Data size Accuracy (%)

1 H. Pezeshki et al. (2019) [35] SVM 58 91.37
2 V.S. Gnanasekaran et al. (2020) [36] CNN 322 92.54
3 Jia Li et al (2023) [37] Self-Attention Random Forest 322 98.79
4 Our result LPBoosting Ensemble learning 100 100

while the utilization of advanced segmentation algorithms
like K-means underscores the potential for more precise
delineation of image regions. Moreover, the exploration
of additional feature extraction methods beyond statistical
measures promises to enrich the classification process,
potentially yielding more robust and accurate results in
diverse imaging applications.
Despite the advantages mentioned above, the wavelet
transform-based denoising method, although it considers
the relationship between components at different scales
and achieves good results, does not yet respond to current
development trends. Additionally, the data used is from a
public database and has not been collected from hospitals.
These two limitations will be addressed in future work.
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